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Abstract 

Background:  The mechanisms of Gastric cancer (GC) initiation and progression are complicated, at least partly 
owing to the dynamic changes of gene regulation during carcinogenesis. Thus, investigations on the changes in regu‑
latory networks can improve the understanding of cancer development and provide novel insights into the molecular 
mechanisms of cancer.

Methods:  Differential co-expression analysis (DCEA), differential gene regulation network (GRN) modeling and dif‑
ferential regulation analysis (DRA) were integrated to detect differential transcriptional regulation events between 
gastric normal mucosa and cancer samples based on GSE54129 dataset. Cytological experiments and IHC staining 
assays were used to validate the dynamic changes of CREB1 regulated targets in different stages.

Results:  A total of 1955 differentially regulated genes (DRGs) were identified and prioritized in a quantitative way. 
Among the top 1% DRGs, 14 out of 19 genes have been reported to be GC relevant. The four transcription factors 
(TFs) among the top 1% DRGs, including CREB1, BPTF, GATA6 and CEBPA, were regarded as crucial TFs relevant to 
GC progression. The differentially regulated links (DRLs) around the four crucial TFs were then prioritized to gener‑
ate testable hypotheses on the differential regulation mechanisms of gastric carcinogenesis. To validate the dynamic 
alterations of gene regulation patterns of crucial TFs during GC progression, we took CREB1 as an example to screen 
its differentially regulated targets by using cytological and IHC staining assays. Eventually, TCEAL2 and MBNL1 were 
proved to be differentially regulated by CREB1 during tumorigenesis of gastric cancer.

Conclusions:  By combining differential networking information and molecular cell experiments verification, test‑
able hypotheses on the regulation mechanisms of GC around the core TFs and their top ranked DRLs were generated. 
Since TCEAL2 and MBNL1 have been reported to be potential therapeutic targets in SCLC and breast cancer respec‑
tively, their translation values in GC are worthy of further investigation.
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Background
Gastric cancer (GC) remains one of the most common 
malignant tumors and a leading cause of cancer mortal-
ity worldwide, especially in East Asia (Chen et  al. 2016; 
Siegel et  al. 2019). Targeted therapy has shown lim-
ited efficacy in GC patients, since HER2-targeted Tras-
tuzumab, VEGFA/VEGFR2-targeted Bevacizumab, 
Ramucirumab, Apatinob, Regorafenib, and some immu-
nomodulators such as Nivolumab for PD-L1 positive 
metastatic GC, are the only effective therapies so far, and 
most clinical trials evaluating targeted treatments with 
approved efficacy in other cancer types have failed in 
gastric cancer. Studies on molecular mechanisms would 
help to explore novel targets and therapies. In addition 
to the efforts aiming to highlight molecular alterations 
in potential driver genes, it is necessary to clarify the 
dynamic alteration of transcriptional regulation during 
the process of gastric carcinogenesis.

Transcription factors (TFs), being the hubs of gene 
regulatory network (GRN) and cellular signaling, par-
ticipate in transcription regulation during growth and 
development of both normal and tumor tissues. It has 
been widely accepted that transcriptional dysregulation 
plays a key role in carcinogenesis, metastasis, progno-
sis and drug dependency in a large number of cancers. 
Therefore, deciphering conditional regulation patterns 
from dynamic GRNs and elucidating the mechanisms of 
gene dysregulation triggered by oncogenic TFs is critical 
for understanding the molecular biology of cancer and 
designing effective therapeutic strategies (Gascard et  al. 
2015; Thoms et al. 2019). In this scenario, a realistic prob-
lem is how to find the key TFs with distinct regulation 
functions in normal and cancer tissues, and further how 
to understand the roles of these TFs in different states.

In recent years, differential co-expression analysis 
(DCEA) is emerging as a practical approach that focuses 
on the changes in gene co-expression patterns between 
two phenotypes rather than the traditional focus, i.e., 
the changes in expression level of individual genes, and 
thus provides clues to the abnormal regulations spe-
cific to the phenotype of interest (de la Fuente, 2010; Yu 
et al. 2011). Furthermore, gene regulation network mod-
eling (GRN modeling) and differential regulation analysis 
(DRA) enables the identification of differential regula-
tory relationships during phenotypic changes or patho-
logical processes (Hood et al. 2004). In the present study, 
by integrating DCEA, GRN modeling and DRA, we 
obtained four differentially regulated TFs, CREB1, BPTF, 

GATA6 and CEBPA, and their surrounding differentially 
regulated links (DRLs), which provided novel insights 
into the pathophysiology of GC carcinogenesis. Further 
experimental verification indicated that CREB1 might 
contribute to GC progression by differentially regulating 
TCEAL2 and MBNL1.

Methods
Cell culture
GC cell lines NCI-N87 and BGC823 were obtained from 
Shanghai Institutes for Biological Sciences, Chinese 
Academy of Sciences. An immortalized normal gastric 
epithelial cell line GES-1 and 293 T cells were cultured in 
RPMI-1640 or DMEM medium supplemented with 10% 
fetal calf serum and maintained at 37 °C in a humidified 
atmosphere of 5% CO2.

Tissues
GC tissues and normal tissues were obtained from 
patients who underwent radical gastrectomy between 
2013 and 2016 at the Department of Surgery, Ruijin Hos-
pital, Shanghai Jiao Tong University School of Medicine. 
All tissues including 56 GC samples and 52 normal sam-
ples were formalin-fixed and paraffin-embedded into tis-
sue arrays. All samples were confirmed by pathological 
diagnosis.

Gene expression profiles
The gene expression profile dataset GSE54129 (111 gas-
tric cancer and 21 normal mucosa samples) were custom-
ized using Human Whole Genome U133 Plus 2.0 array 
(Affymetrix Inc, Santa Clara, CA, USA). Microarray 
quality control and assessment were performed using R 
affy package (Gautier et al. 2004) available from the Bio-
conductor website. The expression data were normalized 
by RMA (robust multi-array average) method and log2 
transformed. The data quality was estimated according to 
express level distribution, density distribution and corre-
lations of samples.

Differential co‑expression and differential expression 
analysis
Differentially co-expressed genes (DCGs) and differ-
entially co-expressed gene links (DCLs) were obtained 
with our differential co-expression analysis (DCEA) algo-
rithms (Liu et al. 2010; Yang et al. 2013; Yu et al. 2011). 
Specifically, DCGs were identified by DCp method with 
FDR less than 0.05 and DCLs were identified by modified 
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LFC method. Differentially expressed genes (DEGs) 
were obtained by SAM method (Dudoit et al. 2002) with 
q-value less than 0.05. The expression profile of DEGs in 
GSE54129 was clustered by using ward linkage hierarchi-
cal clustering method (Murtagh and Legendre 2014).

Differential regulation network modeling and analysis
Following the protocol described in our previous work 
(Cao et al. 2015), we constructed stage-specific GRNs by 
using multivariant linear regression model based on the 
expression profile of DCGs identified from GSE54129 
and candidate TF-target regulatory relationships from 
UCSC (http://​genome.​ucsc.​edu/). Through prefiltering 
regulators and stepwise linear regression, mRNA expres-
sion level of the DCGs in GSE54129 was modeled by its 
crucial regulators with quantitative regulation efficacies 
in these stage-specific GRNs.

To identify the differential regulation gene (DRG) in 
GRNs, a quantitative differential regulation (DR) meas-
ure was adopted to capture the average regulation 
changes of a gene between two GRNs, 

DRi =

√

∑n
j=1

(Xij−Yij)
2

n  , with Xij and Yij as the regulation 
efficacies between gene i and j in GRN X and Y, respec-
tively (Cao et al. 2015). In order to identify and measure 
differentially regulated links (DRLs) between two GRNs, 
the method combined with modified LFC method and 
regulatory efficiency log fold change curve filter was used 
(Cao et al. 2015; Liu et al. 2010).

CREB1 knockdown and overexpression
For CREB1 knockdown, a CREB1-siRNA sequence 
5′-CCA​ACA​AAU​GAC​AGU​UCA​ATT-3′ and the nega-
tive control sequence 5′-GTT​CTC​CGA​ACG​TGT​CAC​
GT-3′ were synthesized by GenePharma (Shanghai, 
China). Transfection of cells with oligonucleotides was 
performed using Lipofectamine 2000 Reagent (Invit-
rogen, Carlsbad, CA, USA) at a final concentration of 
100 nM. Transfection efficiency was monitored by qRT-
PCR and Western blot. The Ubi-MCS-SV40/CREB1 len-
tiviral transduction particles for ectopic overexpression 
of CREB1 was purchased from Genechem (Shanghai, 
China) and transfected into cells. Stable transfected cell 
clones were selected with puromycin and screened by 
qRT-PCR and Western blot.

Quantitative RT‑PCR (qRT‑PCR)
QRT-PCR was performed as described before (Yu et  al. 
2017). Each assay was repeated 3–4 times. The primer 
sequences for in  vitro assays are available in Additional 
file 8: Table S1.

Western blot
Western blot was performed as described before (Yu 
et  al. 2017). The primary antibodies against CREB1 
(1:1000, Abcam), TCAEL2 (1:1000, Abcam) and 
MBNL1 (1:1000, Abcam) were used. Goat anti-mouse 
or goat anti-rabbit IgG conjugated with horseradish 
peroxidase (HRP, ProteinTech) dilutions were 1:10,000. 
Primary antibody against GAPDH from ProteinTech 
was used as a control to confirm equal loading of 
proteins.

Immunohistochemistry staining (IHC)
IHC staining was performed as previously reported (Yu 
et al. 2017). Four duplicate tissue arrays containing 56 
GC samples and 52 normal samples were incubated 
by primary antibodies including anti-CREB1 (1:500, 
Abcam), MBNL1 (1:250, Abcam) and anti-TCAEL2 
(1:250, Abcam). The percentage of positive cells was 
divided into five grades (percentage scores): < 5% (0), 
5–25% (1), 25–50% (2), 50–75% (3), 75–100% (4). 
The intensity of staining was divided into four grades 
(intensity scores): no staining (0), weak staining (1), 
moderate staining (2) and strong staining (3). The final 
IHC staining score was determined by the following 
formula: overall score = percentage score × intensity 
score. The overall score ≤ 3 was defined as negative, 
and > 3 as positive.

Luciferase reporter assay
TCEAL2 or MBNL1 promoter fragments were ampli-
fied from human genomic DNA, and were inserted into 
pGL3-Basic vector. Luciferase activity was measured 
after 24 h incubation using a Dual-Glo luciferase assay 
kit (Promega) and single-tube luminometer (Promega).

Statistical analysis
Results were shown as mean ± standard deviation (SD). 
The expression correlations between CREB1 and its 
targets were analyzed by Spearman test. Differences 
between experimental groups were assessed by the 
Student’s t test or one-way ANOVA. A result with two-
tailed p-value < 0.05 was deemed as statistically signifi-
cant. Statistical analyses were performed using SPSS 
22.0 software (SPSS Inc.).

Results
Stage‑specific gene regulatory networks
The gene expression profile of GC (GSE54129) involves 
111 gastric cancer and 21 normal mucosa samples (see 
Additional file  1: Fig. S1A–C for data quality assess-
ment). By using R affy package, 2415 DEGs were 
obtained with FDR < 0.05 and log2 fold change > 1.5. 

http://genome.ucsc.edu/


Page 4 of 14Yu et al. Molecular Medicine           (2022) 28:41 

Unsupervised hierarchical clustering based on the 
2415 DEGs out of the 132 samples exhibited a clear 
separation between normal and cancer, indicating the 
reliability of the data and the clinical relevance of the 
differential expression between cancer and normal 
(Additional file 1: Fig. S1D).

We then applied DCGL package to GSE54129 data-
set and extracted a total of 3875 DCGs between nor-
mal and cancer. In order to confirm the functional 
relevance of the DCGs, we carried out functional 
enrichment analysis in Gene Ontology by using DAVID 
(https://​david.​ncifc​rf.​gov/​home.​jsp) and obtained a 

Fig. 1  Stage-specific gene regulatory networks and GO analysis. GO analysis of the DCGs in the terms of (A) Biological processes; (B) Cellular 
components; (C) Molecular function and (D) KEGG pathway analysis. E Gene regulatory network (GRN) in normal (left) and in cancer (right). F Venn 
diagrams illustrate the number of regulatory relationships involved in two stage-specific GRNs. G Out-degree distribution of 30 TFs involved in two 
stage-specific GRNs. H Distribution of TDR values of 30 TFs in two stage-specific GRNs

https://david.ncifcrf.gov/home.jsp
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number of biological processes, including response to 
toxic substance, extracellular structure organization 
and negative regulation of phosphorylation and so on 
(Fig.  1A), a number of cellular components, includ-
ing adherens junction, extracellular matrix, collagen-
containing extracellular matrix and so on (Fig. 1B), and 
several molecular functions, including cell adhesion 
molecule binding, cofactor binding, phospholipid bind-
ing and so on (Fig. 1C). In addition, these DCGs were 
also enriched in three KEGG pathways, PI3K-Akt sign-
aling pathway, Focal adhesion and Salmonella infection 
(Fig. 1D). These observations are coherent to our gen-
eral understanding of cancer progression.

Based on the stage-specific expression data of the 
DCGs, stage-specific GRNs corresponding to nor-
mal and cancer were separately constructed by using 
stepwise linear regression method (Fig.  1E). Aiming 
to investigate the dynamic changes of gene regulation 
during GC progression, the topological properties of 
the two GRNs were compared in terms of their basic 
statistics (Table  1) and topological parameters includ-
ing in-degree (In-Deg), out-degree (Out-Deg), 
betweenness (Bet), clustering coefficient (CC), and 
closeness (Cls) (Table 2). First of all, the regulatory rela-
tionships (links) of cancer network (2726) were about 
70.3% more than the normal network (1621) (Table 1). 
Accordingly, the In-Deg, CC and Cls are significantly 
different between normal and cancer networks accord-
ing to Wilcoxon rank-sum test (Table 2), indicating that 
the topological structure of gene regulation networks 
greatly changed to be more compact during GC pro-
gression. When classifying the links into “overlapped” 
and “stage-specific”, the number of stage-specific links 
accounted for over 50% for both two networks (Fig. 1F), 
supporting that our stage-specific GRNs were indeed 
enriched with differential regulatory relationships. It 
was interesting that the two GRNs share the same 30 
TFs (Table 1), however, the regulation patterns around 
these TFs were apparently different between normal 
and cancer stages. Specifically, although the Out-Deg 
values of the 30 TFs showed a similar pattern between 
two GRNs (Fig.  1G), more than 50% targets regulated 
by a certain TF changed between two GRNs accord-
ing to the TDR (target diversity of a regulator) measure 
(Fig. 1H) which was used to quantitatively examine how 
the TF targets changed across GRNs(Cao et  al. 2015). 

Therefore, we propose the 30 TFs involved in our GRNs 
to be relevant to differential regulation underlying gas-
tric carcinogenesis.

Differentially regulated genes (DRGs) between normal 
and tumor tissues
We applied differential regulation analysis (DRA) to cap-
ture differential regulation events during phenotypic 
changes (Cao et  al. 2015), and obtained a total of 1955 
DRGs between normal and cancer GRNs. (see Additional 
file 9: Table S2 for the DRG list in a descending order by 
DR value). According to the design of DR measure, DRGs 
have experienced significant change during phenotypic 
progression, and the change could be related to TF-target 
relationships and the regulation efficacy. We propose that 
genes with higher ranks in the DRG list undergo more 
significant functional alteration and play more important 
roles in gastric cancer progression. As expected, fourteen 

Table 1  Statistics of stage-specific GRNs in GSE54129

GRNs Links TFs Targets

Normal 1621 30 1242

Cancer 2726 30 1657

Table 2  Toplogical comparison of stage-specific GRNs

* Means significant p-value < 0.05. Topological difference significance (p-value) 
was calculated by Wilcoxon rank-sum test

In-Deg Out-Deg Bet CC Cls

Normal 1.31 54.08 0.12 0.045 6.32E-07

Cancer 1.64 90.89 2.46 0.09 3.66E-07

Normal vs. Cancer 3.39E−44* 0.281 0.509 3.61E−06* 0*

Table 3  The top 1% genes in DRG list

The genes are sorted by the DR values. Genes in bold refer to

GC-related genes; genes in italic refer to TFs

DRGs DR_value Rank

SLC7A9 65.03438 1

REG4 22.26006 2

BPTF 20.02962 3

DHRS11 19.11607 4

ANXA13 17.92791 5

C7 15.36403 6

ASS1 15.10191 7

MSMB 13.03145 8

CLCA1 12.91625 9

CREB1 12.84939 10

GATA6 10.11172 11

TRIM15 9.481667 12

CLRN3 9.299721 13

GAST 8.957028 14

DHRS1 8.936077 15

SLC39A5 8.710737 16

CDCA3 8.526506 17

CPS1 7.973394 18

CEBPA 7.791725 19
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out of the top 1% (nineteen) DRGs (Table  3) have been 
reported to be GC relevant (BPTF (Lee et  al. 2016), 
REG4 (Duan et al. 2014), ANXA13 (van Duin et al. 2007), 
C7 (Tsuge et  al. 2009), ASS1 (Tsai et  al. 2018), MSMB 
(Ohnuma et  al. 2009), CREB1 (Liu et  al. 2019), GATA6 
(Song et  al. 2018), TRIM15 (Zhou et  al. 2020), GAST 
(Tang et al. 2019), SLC39A5 (Ding et al. 2019), CDCA3 
(Yu et al. 2019), CPS1 (Hejna et al. 2016) and CEBPA (Shi 
et al. 2015)). We then took the four TFs: CREB1, BPTF, 
GATA6 and CEBPA among the top 1% ranked DRGs as 
crucial TFs relevant to GC progression.

Differentially regulated links (DRLs) around CREB1, BPTF, 
GATA6 and CEBPA
In order to understand the dynamic changes in regula-
tion relationships of crucial TFs, we investigated the dif-
ferentially regulated links (DRLs) around CREB1, BPTF, 
GATA6 and CEBPA. DRLs around each TF across the 
two GRNs were obtained by using the modified LFC 
model from DCGL package (Cao et  al. 2015; Liu et  al. 
2010), and ranked by their absolute changes of regulation 
efficacy in a descending order. Similarly as DRGs, we pro-
posed that gene pairs with higher ranks in the DRL list 
play more important roles in gastric cancer progression.

CREB1 is an oncogenic TF in GC and plays critical 
role in physiological processes (Siu and Jin 2007). The 
expression level of CREB1 was elevated in cancer sam-
ples in GSE54129 (Fig. 2A), which is consistent with the 
observation in STAD (http://​gepia.​cancer-​pku.​cn/​detail.​
php?​gene=​CREB1). The transcriptional regulation activi-
ties of CREB1 were reported to impart selectivity across 
different conditions (Mayr et  al. 2001). The top seven 
ranked differential DRLs (TRIM15, TCEAL2, NHERF1, 
RBPMS2, FERMT2, FAM20C and MBNL1) around 
CREB1 were ordered descendingly by the changes of 
regulation efficacy in Table 4. According to the regulation 
efficacy data (Table 4), the positive regulation of TRIM15 
and NHERF1 by CREB1 was reversed from normal to 
cancer; the negative regulations of TCEAL2, RBPMS2 
and FAM20C by CREB1 disappeared; and the negative 
regulation of FERMT2 was reversed from normal to 
cancer. MBNL1 was not regulated by CREB1 in normal, 
while positively regulated by CREB1 in cancer. The dif-
ferential expression trends of the seven target genes in 
GSE54129 dataset are consistent with the above regu-
lation alteration. The dysregulation events induced by 
CREB1 and their functional relevance were summarized 
in Fig.  2B, C. We proposed that CREB1 could differen-
tially regulate its downstream targets between normal 
and cancer tissues, which at least partly leads to GC 
development.

BPTF plays a critical role in embryogenesis and stem 
cell differentiation and has been reported to participate 

in the initiation and progression of multiple tumors 
(Richart et  al. 2016; Stankiewicz et  al. 2017). Accord-
ing to our GSE54129 dataset, the expression level of 
BPTF was increased in gastric cancer (Additional file 2: 
Fig. S2A) and furthermore, BPTF formed DRLs with 
PPM1L, NKX6.3 and PIK3R3 (Additional file  2: Fig. 
S2B). The positive regulation of PPM1L by BPTF was 
lost from normal to cancer, and meanwhile the expres-
sion of PPM1L was found to be decreased in cancer, 
which is consistent with the regulation change (Thean 
et al. 2010). The positive regulation of NKX6.3 by BPTF 
was reversed from normal to cancer, and consistently, 
the decreased expression of NKX6.3 was observed in 
cancer. The negative regulation of PIK3R3 by BPTF was 
lost from normal to cancer, which was in accordance 
with the over-expression of PIK3R3 in cancer. Taken 
together, BPTF may exert its oncogenic role in GC 
through differentially regulating downstream targets 
PPM1L, WKX6.3 and PIK3R3 (Fig. S2C), which was 
supported by the established association with carcino-
genesis of PPM1L (Thean et  al. 2010), WKX6.3 (Yoon 
et al. 2016) and PIK3R3 (Yu et al. 2015).

GATA6, a critical regulator in the development of 
gastrointestinal tract, has been found to control apop-
tosis and cell cycle of GC. Previous study reported 
that GATA6 expression was decreased in GC and 
GATA6 may act as a tumor suppressor (Sulahian et al. 
2014). We also observed decreased expression of 
GATA6 in cancer (Additional file  3: Fig. S3A). Addi-
tionally, GATA6 formed DRLs with REG4, CA9, and 
STC1 in our stage-specific GRNs (Additional file  3: 
Fig. S3B). The negative regulation of REG4 by GATA6 
was reversed to be positive from normal to cancer, the 
positive regulation of CA9 by GATA6 in normal tissue 
disappeared in cancer and the negative regulation of 
STC1 by GATA6 in normal stage was also disappeared 
in cancer. Similarly, the changes in gene expression of 
the three targets are consistent with the change in tran-
scriptional regulation. Combined with prior knowledge 
from literature, the dysregulation mechanisms around 
GATA6 were proposed in Additional file 3: Fig. S3C.

CEBPA acts a crucial role in terminal differentiation, 
and has been proved to be a tumor suppressor gene in 
GC (Altarejos and Montminy 2011). The expression of 
CEBPA was decreased in cancer samples in GSE54129 
dataset (Additional file  4: Fig. S4A) and formed DRLs 
with CLCA1, CES2 (Additional file  4: Fig. S4B). The 
positive regulation of CLCA1 and CES2 were both lost 
from normal to cancer, and thus may result in reduced 
expression of two targets, which could further inhibit 
proliferation or induce apoptosis (Li et al. 2017b; Shao-
jun et al. 2018) (Additional file 4: Fig. S4C).

http://gepia.cancer-pku.cn/detail.php?gene=CREB1
http://gepia.cancer-pku.cn/detail.php?gene=CREB1
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Differentially regulated targets of CREB1 between normal 
and cancer
In order to confirm the effects of differential regulation by 
CREB1, we examined the changes in mRNA expression 
of the seven candidate dysregulated targets of CREB1, 
including TRIM15, TCEAL2, NHERF1, RBPMS2, 
FERMT2, FAM20C and MBNL1, after silencing and 

overexpressing CREB1 in immortalized gastric epithelial 
cell line GES-1 and GC cell line NCI-N87, respectively. 
TRIM15, NHERF1, RBPMS2, FERMT2 and FAM20C did 
not show any significant expression change after disturb-
ing CREB1 expression in both normal gastric epithelial 
cells and GC cells, and therefore were filtered out from 
the target list (Fig.  3A). Consistent with the modeling 

Fig. 2  The proposed dysregulation mechanisms around CREB1. A The expression level of CREB1 in GSE54129 dataset. B CREB1 is a TF, and the other 
nodes are its targets. Links in red, blue and grey represent positive, negative and absent relationships calculated with dataset GSE54129. Numbers 
on the links indicate the regulation efficacies. C The proposed mechanism by which CREB1 induces GC. *Means significant P-value < 0.05, two-sided 
Student’s t-test
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result that the negative regulation of TCEAL2 by CREB1 
disappeared from normal to cancer, the expression of 
TCEAL2 was markedly decreased in GES-1/CREB1 and 
increased in GES-1/CREB1-siRNA compared with con-
trol group, while the expression of TCEAL2 in NCI-N87 
kept stable between disturbed (CREB1 or CREB1-siRNA) 
and control (Fig.  3B). In accordance with the modeling 
result that MBNL1 was only positively regulated by 
CREB1 in cancer, the expression of MBNL1 in GES-1 
did not show any significant change between disturbed 
(CREB1 or CREB1-siRNA) and control, while it was sig-
nificantly increased in NCI-N87/CREB1 and decreased 
in NCI-N87/CREB1-siRNA compared with control 
(Fig. 3B). Similar results were obtained in BGC823 cells 
with CREB1 overexpression or knockdown (Additional 
file 5: Fig. S5A, B).

As shown in Fig.  3C, TCEAL2 and MBNL1 contain 
putative responsive elements (CREs) of CREB1 in their 
promoter regions according to JASPAR, CCT​GGT​GA 
and TGAC/GGTCT/A. To verify the transcriptional role 
of CREB1 in TCEAL2 or MBNL1 promoter, CREB1 plas-
mid was co-transfected with TCEAL2 or MBNL1 lucif-
erase reporter plasmid containing CREB1 binding sites 
into 293  T cells and NCI-N87 cells. Renilla luciferase 
was applied as a control for normalization of transfection 
efficiency. It was found that CREB1 overexpression sup-
pressed TCEAL2 promoter in 293  T cells and activated 
MBNL1 promoter in NCI-N87 cells (Fig. 3D).

Differential regulation of TCEAL2 and MBNL1 by CREB1 
between normal and cancer
In order to confirm the effects of differential regulation 
of TCEAL2 and MBNL1 by CREB1 at the protein level, 
western blot and IHC were performed for each target. 
The protein level of TCEAL2 was increased in GES-1/
siCREB1 and reduced in GES-1/CREB1 in comparison 
with control groups (Fig.  4A). However, in NCI-N87/
siCREB1 and NCI-N87/CREB1, TCEAL2 didn’t show 
any differences compared with control groups (Fig. 4A). 
In BGC823 cells, TCEAL2 had no change after CREB1 

disturbing either (Fig. S5C and S5D). IHC staining 
revealed that the expression of TCEAL2 was negatively 
correlated with CBRE1 in normal gastric samples (n = 52, 
r = − 0.613, P < 0.01), whereas no correlation with CREB1 
in GC samples (n = 56, r = 0.062, P = 0.663) (Fig. 4B, C).

MBNL1 was upregulated in NCI-N87/CREB1 and 
reduced in NCI-N87/siCREB1 compared with control 
groups, however, the expression of MBNL1 didn’t change 
obviously in both GES-1/siCREB1 and GES-1/CREB1 
(Fig.  5A). The same trend of MBNL1 was observed in 
BGC823 cells (Fig. S5C and S5D). IHC study showed that 
the expression of MBNL1 was positively correlated with 
CREB1 in tumor samples (n = 56, r = 0.419, P = 0.01), 
and the correlation between CREB1 and MBNL1 was 
insignificant in normal gastric samples (n = 52, r = 0.153, 
P = 0.276) (Fig. 5B, C).

Taken together, western blot and IHC results con-
firmed the effect of differential regulation of TCEAL2 
and MBNL1 by CREB1 at the protein level, support-
ing the hypothesis on the dysfunctional mechanism of 
CREB1 in gastric carcinogenesis.

Discussion
Cancer is one of major health challenges for human-
ity, due to its complex molecular characteristics, tumor 
microenvironment, immune privilege, metastatic capac-
ity and so on (Hanahan, 2022; Isik et al. 2020, 2021). Gas-
tric carcinogenesis is a multistep process with genomic 
changes in genes controlling cell growth and differentia-
tion, followed by the dysregulation of cell signaling trans-
duction, which leads to abnormal expression of a large 
number of genes, and eventually over-activation of cell 
proliferation. In the field of transcriptomics, DCEA has 
proved to be an effective strategy to explore gene inter-
connection changes under varying conditions (Cao et al. 
2015; Dai et al. 2018; de la Fuente, 2010; Li et al. 2017a; Yu 
et al. 2011). DCEA looks at changes in gene co-expression 
patterns, and thus provides clues to the disrupted regula-
tory relationships or dysfunctional regulations specific to 
interested phenotype (Liu et al. 2010). Our previous work 
has integrated this strategy and reverse-forward inte-
grated modeling method to obtain three stage-specific 
(normal, adenoma and cancer) differential regulation-
enriched networks based on TCGA-STAD dataset, lead-
ing to 36 DRGs for normal to adenoma transition and 
56 DRGs for adenoma to cancer transition, out of which 
more than 50% have been reported to be GC related (Cao 
et al. 2015). TFs as central regulators of gene expression 
are involved in the initiation, maintenance and progres-
sion of tumor. Mutations or aberrant expression of onco-
genic TFs in tumor have been frequently demonstrated, 
such as SOX2 in esophageal squamous cancer (Watanabe 
et al. 2014), NKX2-1 in lung adenocarcinoma (Mollaoglu 

Table 4  The regulation efficacy of CREB1 on its targets

TF Target Normal Cancer DRL_value

CREB1 TRIM15 2.596 − 0.483 3.079

CREB1 TCEAL2 − 2.315 0.000 2.315

CREB1 NHERF1 1.796 − 0.437 2.233

CREB1 RBPMS2 − 1.897 0.000 1.897

CREB1 FERMT2 − 0.673 1.049 1.722

CREB1 FAM20C − 1.616 0.000 1.616

CREB1 MBNL1 0 0.894 0.894
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Fig. 3  Validation of differentially regulated targets of CREB1 between normal and cancer. A TRIM15, NHERF1, RBPMS2, FERMT2 and FAM20C, 
each gene expression was measured by qRT-PCR in GES-1 and NCI-N87 cells transfected with CREB1 specific siRNA or CREB1 lentivirus (n = 3–4). 
B Overexpression or downregulation of CREB1 in GES-1 and NCI-N87 cells, and the expression changes of TCEAL2 and MBNL1 were measured by 
qRT-PCR (n = 3–4). C CREs in the promoters of TCEAL2 and MBNL1. Sequence analysis of the promoters of the two genes indicated the potential 
binding sites for CREB1. D TCEAL2 or MBNL1 pGL3 luciferase reporter was co-transfected with CREB1 into 293 T cells and NCI-N87 cells, and 
relative luciferase activity was detected. *Means significant P-value < 0.05, *** means significant P-value < 0.001, NS means no significant, two-sided 
Student’s t-test
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et al. 2018) and AR in prostate cancer (Culig and Santer 
2014), however, their dysfunctional transcriptional regu-
lations have been seldom studied, especially in gastric 
carcinogenesis.

In order to find out the dysregulation mechanisms 
underlying gastric carcinogenesis, we focused on GC-
related TFs and their surrounding top ranked DRLs. 
During disease progression, those abnormal regula-
tion relationships, which might be disrupted expression 

correlation or emerging correlations between TFs and 
targets, could be captured by our integrative strategy 
including DCEA, GRN modeling and DRA. Based on 
dataset GSE54129, involving 111 gastric cancer and 21 
normal mucosa samples, we identified four TFs including 
CREB1, BPTF, GATA6 and CEBPA with high DR value 
among top 1% DRGs. In order to investigate the dynamic 
regulation changes of TFs from normal to cancer, we 
focused on the oncogenic TF—CREB1 and identified 

Fig. 4  CREB1 differentially regulated TCEAL2 under normal and cancer stages. A Western blot analysis for TCEAL2 expression was performed with 
cell lysate from GES-1 and NCI-N87 transfected with CREB1 lentivirus vectors (Left) or siRNA specific to CREB1 (Right). B Correlation between CREB1 
and TCEAL2 in diagnostic tumor samples (n = 56, r = 0.062, P = 0.663) and normal samples (n = 52, r = 0.613, P < 0.01). C Representative IHC staining 
of CREB1 and TCEAL2 in tumor and normal samples (400 ×). *Means significant P-value < 0.05, NS means no significant, correlation between CREB1 
and TCAEL2 expression was analyzed by Spearman test
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two differentially regulated target genes, TCAEL2 and 
MBNL1, experimentally validating the differential 
dependence of target’s mRNA expression on the expres-
sion level of CREB1 between normal and cancer.

TCEAL2 has been recognized as an important nuclear 
target for intracellular signal transduction. Several stud-
ies have observed that TCEAL2 was overexpressed in 
various tumors including meningioma and ovarian carci-
noma, and it was closely related to poor clinical outcome 
(Kim et al. 2010; Stuart et al. 2011). Though TCEAL2 is 

not a known GC-related gene, it was reported to be a 
potential immunotherapeutic target in SCLC and could 
be involved in promoting proliferation and inhabiting 
apoptosis of cancer cells (Taguchi et al. 2014). The over-
expression of TCEAL2 in cancer condition was observed 
in our GSE54129 dataset (Additional file  6: Fig. S6A), 
meanwhile the loss of negative regulation of TCEAL2 
by CREB1 in cancer was inferred, which may facilitate 
proliferation and inhibit apoptosis and thus promotes 
carcinogenesis.

Fig. 5  CREB1 differentially regulated MBNL1 under normal and cancer stages. A Western blot analysis for MBNL1 expression was performed with 
cell lysate from GES-1 and NCI-N87 transfected with CREB1 lentivirus vectors (Left) or siRNA specific to CREB1 (Right). B Correlation between CREB1 
and MBNL1 in diagnostic tumor samples (n = 56, r = 0.419, P = 0.01) and normal samples (n = 52, r = 0.153, P = 0.276). C Representative IHC staining 
of CREB1 and MBNL1 in tumor and normal samples (400 ×). *Means significant P-value < 0.05, NS means no significant, correlation between CREB1 
and MBNL1 expression was analyzed by Spearman test
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MBNL1 was one of pre-mRNA alternative splicing fac-
tors, and affected many steps of RNA maturation and 
expression (Han et  al. 2013). A recent study suggested 
MBNL1 could suppress breast cancer metastatic colo-
nization and stabilize metastasis suppressor transcripts 
(Fish et  al. 2016), while another study revealed that 
MBNL1 was a cancer-related splicing regulator which 
acted as a splicing repressor in Dicer1 processing, result-
ing in colorectal carcinogenesis (Tang et  al. 2015). The 
overexpression of MBNL1 was observed in our present 
dataset, in accordance with the emerging positive regu-
lation of MBNL1 by CREB1 in cancer (Additional file 6: 
Fig. S6B). We therefore proposed that the positive regula-
tion of MBNL1 by CREB1 might lead to the overexpres-
sion of MBNL1 that promotes GC progression via Dicer1 
processing.

Gene correlation analysis and survival analysis of 
CREB1, TCEAL2 and MBNL1 on TCGA-STAD data-
set were also performed. We observed no correlation 
between CREB1 and TCEAL2 (Spearman correlation 
coefficient is 0.042, p = 0.4) and significant correlation 
between CREB1 and MBNL1 (Spearman correlation 
coefficient is 0.64, p < 0.001) (Additional file 7: Fig. S7A, 
B), which is consistent with the scenario based on 
GSE54129. Kaplan–Meier survival analyses showed that 
the two groups classified by CREB1 expression level has 
no significant difference (HR = 1.2, pHR = 0.21; Addi-
tional file 7: Fig. S7C) on the overall survival (OS). How-
ever, when adopting CREB1, TCEAL2 and MBNL1 as a 
3Sginature, the High-3Signatures group displayed a sig-
nificantly poor OS compared with the Low-3Signatures 
group (HR = 1.4, pHR = 0.033; Additional file  7: Fig. 
S7D). Therefore, the main conclusions of our manuscript 
were basically validated on the TCGA-STAD dataset.

Through mutual verification of computational analysis, 
clinical pathology and biological experiments, we have 
obtained reliable and consistent results to support our 
hypothesis on the dysfunctional mechanism of CREB1 
during gastric cancer progression. Besides potential 
CREB1/TCEAL2-MBNL1 signaling, our DCEA-GRN-
DRA framework has actually provided several other 
insightful hints on dysfunctional regulation mechanisms 
underlying carcinogenesis although we have not yet dis-
cover the causal factors of dysregulation events in the 
present work. A plausible speculation is that under the 
repeated stimulation of various external factors in the 
gastric environment, the metabolism of gastric epithe-
lial cells and stromal cells changes, which may lead to the 
mutation of TF DNA binding domain, the phosphoryla-
tion and histone modification of TFs, or recruitment of 
different co-factors, resulting in the alteration of regula-
tion pattern of a specific TF across different stages. The 
detailed mechanisms and their roles in GC progression 

are obviously worthy of further investigation. The lack 
of effective treatments for advanced cancer is a major 
challenge in clinical oncology therapeutics. Considering 
that the transcriptional activities of TFs are hard to be 
inhibited directly, the targets and pathways they regulate 
might be more tractable for drug development.

Conclusions
In summary, by combining differential networking infor-
mation and molecular cell experiments verification, we 
generated and verified the testable hypotheses on the dys-
regulation mechanisms of GC around the crucial TFs and 
their top ranked DRLs, and proposed a CREB1/TCEAL2-
MBNL1 signaling model, where TCEAL2 and MBNL1 
were proved to be differentially regulated by CREB1 
during tumorigenesis of gastric cancer. We therefore 
proposed TCEAL2 and MBNL1 as potential therapeutic 
targets for gastric cancer. Furthermore, our DCEA-GRN-
DRA data mining framework has been proved to have the 
potential to generate new insights into the dysfunctional 
regulation mechanisms underlying carcinogenesis.
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