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Abstract 

Obesity is one of the major public health problems threatening the world, as well as a potential risk factor for chronic 
metabolic diseases. There is growing evidence that iron metabolism is altered in obese people, however, the highly 
refined regulation of iron metabolism in obesity and obesity-related complications is still being investigated. Iron 
accumulation can affect the body’s sensitivity to insulin, Type 2 diabetes, liver disease and cardiovascular disease. This 
review summarized the changes and potential mechanisms of iron metabolism in several chronic diseases related to 
obesity, providing new clues for future research.
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Introduction
Iron is a metal element abundant on Earth and is involved 
in the composition of all living organisms because of its 
role in various metabolic processes, including oxygen 
transport, DNA synthesis, and electron transport (Abba-
spour et al. 2014). Dietary iron is transported in the small 
intestine or ileum, which is mediated by the iron trans-
porter divalent metal transporter 1 (DMT1) (Gulec et al. 
2014), and excess iron in the body is stored in the form 
of ferritin, mainly in the liver, spleen, bone marrow, and 
small intestine mucosa. Generally, the transferrin-fer-
ritin axis is responsible for maintaining iron homeosta-
sis in the body. Hepcidin is a peptide hormone secreted 
by the liver that binds to and promotes the internaliza-
tion and degradation of Ferroportin (Fpn), resulting in a 
diminished export of non-heme iron from tissues to the 
circulatory system (Nemeth et al. 2004). The decreasing 

of hepcidin prompts an overburden of iron in plasma, 
while the overproduction of hepcidin leads to hypofer-
remia and the anemia of inflammation (Camaschella 
et al. 2020). Under physiological circumstances, the intri-
cate and exact iron homeostasis system guarantees iron 
fixations in cells and keeps intracellular iron overload 
(Ganz 2013). The Fenton reaction occurs when a large 
amount of iron aggregates, which H2O2 generates strong 
oxidizing power of hydroxyl radicals (–OH) in the pres-
ence of Fe2+, and triggers more reactive oxygen species 
(ROS). The occurrence of the Fenton reaction and the 
significant amount of reactive oxygen species production 
induce ferroptosis, which is an iron-dependent form of 
programmed cell death newly discovered in 2012 (Dixon 
et al. 2012).

Type 2 diabetes, insulin resistance, non-alcoholic fatty 
liver disease (NAFLD), hypertension, and atherosclero-
sis are all directly linked to the development of obesity. 
Additionally, it has shown that these metabolic disorders 
are accompanied by variations in iron. In recent dec-
ades, obese adults are found to be more likely to have a 
low iron status than non-obese ones, despite getting ade-
quate iron intake (Lecube et al. 2006). In particular, obese 
patients with combined chronic inflammatory conditions 
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are more susceptible to hypoferritinemia (serum ferritin 
deficiency), which can be considered to be related to iron 
deficiency caused by the inflammatory response (Yanoff 
et  al. 2007). Serum ferritin levels are positively corre-
lated with serum insulin and HOMA-IR values (Moore 
Heslin et  al. 2021), and there is evidence of an associa-
tion between serum iron levels and metabolic syndrome 
(Sachinidis et  al. 2020). Lowering plasma ferritin was 
proved to improve NAFLD in obese patients, suggesting 
that consideration of iron status is imperative in the treat-
ment of obesity-related metabolic dysfunction (Moore 
Heslin et al. 2021). Here, we summarize the pathophysi-
ological mechanisms of iron action in obesity and its 
related metabolic diseases to provide new perspectives 
for the prevention and treatment of obesity (Fig. 1).

The influence of iron metabolism disorder 
to health
Iron deficiency is one of the most common nutritional 
deficiencies in the world, affecting more than 2 bil-
lion people (Denic and Agarwal 2007), and is currently 
the leading cause of common nutritional anemia. Peo-
ple with iron deficiency have a loss of appetite, which 
can be restored by iron supplementation. A previous 
study in Kenya found a link between iron deficiency 
and decreased appetite in primary school-aged children 
and demonstrated that iron supplementation improved 
growth and appetite (Lawless et  al. 1994). Moreover, it 
has been suggested that dietary iron level plays an essen-
tial role in the manipulation of appetite and metabo-
lism through cAMP-responsive element binding protein 
(CREB)-dependent regulation of leptin expression, a 
hormone that is secreted primarily by adipose tissue 
and is responsible for regulating feeding behavior(Gao 
et al. 2015). In addition, iron deficiency impairs adaptive 
thermogenesis, which is the part of our body’s defense 

Fig. 1  Overview of the iron metabolism in obesity and related chronic diseases. Obesity leads to systemic iron deficiency and tissue iron overload, 
causing non-alcoholic fatty liver disease, Type 2 diabetes, coronary atherosclerotic heart disease, and cardiomyopathy
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mechanism against external stimulation (e.g., excess 
energy intake and cold temperature), thereby exacerbat-
ing obesity and metabolic dysfunction (Yook et al. 2021).

In humans, iron overload is considered when the 
transferrin saturation is higher than 45% in females 
and 50% in males (Tanno and Miller 2010). When 
serum transferrin saturation exceeds 60%, non-trans-
ferrin-bound iron (NTBI) accumulates in the circula-
tion and causes cellular damage (Lal 2020). Iron can 
accumulate in multiple organs, most commonly in 
the liver, heart and pancreas (Pietrangelo 2010). In 
addition, sex hormones may play an extensive role in 
iron metabolism. Epidemiological studies have found 
a two–threefold increase in serum ferritin levels in 
premenopausal versus postmenopausal women (Yang 
et al. 2012). Mean serum iron levels were significantly 
higher in participants using contraception (Fischer 
et  al. 2021). Hou et  al. (2012) found the presence of 
estrogen response element (ERE) in the hepcidin gene 
promoter, whose expression is regulated by estrogen. 
As a result, menopausal women are more likely to suf-
fer from iron overload-related diseases. Iron overload 
will increase the risk of liver fibrosis and cirrhosis, 
hepatocellular carcinoma, cardiomyopathy, arthri-
tis and diabetes and some of that will be described in 
detail later.

Iron metabolism and obesity
As mentioned earlier, studies have linked obesity to iron 
deficiency (Zhao et al. 2015), and hepcidin, as the central 
regulator of iron metabolism, may be a potential mediat-
ing factor. On the one hand, adipose tissue of obese indi-
viduals changes in morphology and function and secretes 
some proinflammatory adipokines which can stimulate 
the expression of hepcidin. On the other hand, adipose 
tissue of obese individuals can also directly express hep-
cidin and hemojuvelin (HJV) (Fig. 2 ①).

Hepcidin and HJV in obesity
Hepcidin is a peptide hormone of a single hairpin struc-
ture that is composed of 8 cysteine residues with four 
disulfide bonds. Its amino acid sequences are highly 
conserved in mammals (Mead et  al. 2019). Hepcidin 
was first discovered as an antimicrobial peptide that is 
primarily involved in the body’s immune response (Park 
et al. 2001). The regulation of hepcidin in the inflamma-
tory response is mainly mediated through the IL-6/STAT 
(signal transducers and activators of transcription) sign-
aling pathways (Verga Falzacappa et  al. 2007). Hepcidin 
is mainly synthesized in the liver and is also secreted by 
adipocytes and macrophages (Park et al. 2001; Wozniak 
et al. 2009). Previous studies in mice have found conflict-
ing results regarding the relationship between strain, 

sex, and hepcidin levels (McLachlan et al. 2017). Unlike 
humans, which have only one hepcidin gene, mice have 
two: hepcidin-1 (Hamp1) and hepcidin-2 (Hamp2), 
which share 68% similarity at the protein level but differ 
in function (Ilyin et al. 2003; Nicolas et al. 2001). Only the 
role of hepcidin-1 in iron metabolism has been confirmed 
(Lou et  al. 2004). McLachlan’s study showed that both 
sex and strain have significant effects on Hamp1 expres-
sion levels, confirming previous findings, whereas the 
sex-by-strain interaction was suggestively significant 
(McLachlan et  al. 2017).  Excess secretion of hepcidin 
due to inflammation can result in iron deficiency, while 
inadequate secretion of hepcidin can lead to iron over-
load. It makes sense that intervention of lexaptepid, an 
antagonist of hepcidin, ameliorates the decrease in the 
serum iron level caused by lipopolysaccharide (LPS)-
induced systemic inflammation (van Eijk et al. 2014). In 
addition, a population-based study has found that indi-
viduals with a high body mass index (BMI) gain a sig-
nificant elevation in the serum hepcidin expression level 
compared with those with a low BMI (Vuppalanchi et al. 
2014). In rodent research, a high-fat diet (HFD, 60% 
energy from fat) caused increased expression of hepcidin 
in visceral adipose tissue of mice, as well as a significant 
increase in interleukin (IL)-6 at both mRNA and protein 
levels (Gotardo et  al. 2013). Heme oxygenase (HO-1) 
can inhibit the expression of hepcidin and decrease the 
expression of IL-6 and tumor necrosis factor (TNF)α in 
the liver of obese mice (Puri et  al. 2017). Collectively, 
increased expression of hepcidin due to chronic inflam-
mation in obesity may be one of the important incentives 
of iron deficiency in obese individuals.

HJV, also known as repulsive guidance molecule C 
(RGMc), is a glycoprotein that is mainly expressed in 
skeletal muscle, heart, liver and adipocyte (Luciani et al. 
2011). Similar to hepcidin in function, RGMc is also 
involved in innate immune response (Wu et al. 2017). It 
has been suggested that HJV is necessary for inflamma-
tion-induced hepcidin expression (Canali et  al. 2017). 
HJV deficiency severely inhibits the BMP6/SMAD(Bone 
morphogenetic protein and Drosophila mothers against 
decapentaplegic) signaling pathway, thereby disrupt-
ing the synergistic effects of the BMP6/SMAD and IL-6/
STAT signaling pathways and inhibiting inflammation-
induced expression of hepcidin (Fillebeen et  al. 2018). 
In addition, antibodies to HJV can effectively inhibit the 
increase of hepcidin expression level in both inflamma-
tory and non-inflammatory status and increase the Hb 
level (Kovac et al. 2016). Notably, HJV is also expressed 
in adipocytes at mRNA and protein levels, and its mRNA 
expression was highly increased in adipose tissue from 
obese individuals and positively correlated with hepcidin 
expression levels (Luciani et al. 2011). More importantly, 
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Fig. 2  Schematic diagram of the relationship between iron metabolism disorder and obesity and related metabolic diseases. Hepcidin 
over-expression can induce iron deficiency, and hemojuvelin (HJV) can promote hepcidin expression through the BMP/SMAD signaling pathway. 
① In obese individuals, adipose tissue can regulate expression of hepcidin and HJV through overproduction of pro-inflammatory adipokines 
including IL-6, TNF-α and leptin; meanwhile, it also directly expresses hepcidin and HJV at high levels, which contribute to iron deficiency in 
obese individuals. ② The role of iron overload and ferroptosis in nonalcoholic fatty liver disease (NAFLD). Nuclear receptor coactivator (NOCA)4 
contributes to iron overload by translocating ferritin to lysosomes and increasing the expression of iron regulatory protein (IRP)2 and transferrin 
receptor (TfR). Lipid peroxidation of membrane phospholipids can be eliminated by parallel metabolic pathways, including the cyst(e)ine/GSH/
GPX4 axis, as well as the ferroptosis inducer (RSL3). In addition, several ferroptosis inhibitors such as sodium selenite (GPX4 activator), deferoxamine 
(iron-chelating agent) and ferrostatin-1 (ferroptosis inhibitor) can alleviate the onset and progression of NAFLD. ③ Iron-mediated toxic effects 
in beta-cells. Iron-mediated beta-cell toxicity is mainly due to reactive oxygen species (ROS) accumulation through the Fenton reaction. Excess 
ROS causes mitochondrial damage, leading to defects in the synthesis and secretion of insulin. ROS also influences the activity of the PDX1, 
MafA and AMPK, critical transcription factors for the control of insulin gene expression. In turn, hyperglycemia increases heme oxygenase (HO)-1 
gene expression, exacerbates iron overload, promotes oxidative stress and the development of T2DM. In addition, misfolding and aggregated 
deposition of human islet amyloid polypeptide (hIAPP) due to iron overload can also lead to oxidative stress through endoplasmic reticulum stress, 
mitochondrial damage and complex formation by binding to heme. Besides, iron overload can stimulate glucose uptake and fatty acid oxidation 
by activating AMPK phosphorylation in skeletal muscle and liver, leading to an increase in glucose tolerance. ④ The relationship between iron 
overload and cardiovascular disease. Accumulation of iron in the heart has been supposed to depend on the penetration of Fe2+ through the 
L-type voltage-dependent Ca2+ channel (LVDCC). Non-transferrin-bound iron (NTBI) promotes atherogenesis by leading to ROS production through 
the Fenton reaction and stimulating monocyte chemotactic protein (MCP)1-mediated monocyte aggregation. In addition, iron overload inhibits 
SIRT1 and glutathione peroxidase (GPX)4, contributing to ferroptosis in foam cells and thus leading to atherosclerosis. Moreover, mixed lineage 
kinase (MLK)3 and Beclin1 can induce ferroptosis in cardiomyocytes through JNK/p53, and by affecting the levels of NOCA4, SLC7A11 and GPX4, 
respectively. 
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HJV produced by adipose tissue seems to be biologi-
cally active, as cultured adipocytes increased their hep-
cidin expression via BMP pathway. Meanwhile, blood 
concentration of soluble HJV was significantly increased 
in obese patients compared to controls, suggesting that 
the adipose tissue may have a role in iron homeostasis 
in obesity and in erythropoiesis through the action of 
HJV (Luciani et  al. 2011). Therefore, abnormal expres-
sion of HJV in adipose tissues of obese individuals may 
cause iron deficiency through exaggerating hepcidin 
expression.

Adipokines and proinflammatory cytokines and iron 
metabolism in obesity
Adipokines can coordinate hepcidin in the liver. In addi-
tion to adipokines such as leptin, M1-type macrophages 
recruited by hypertrophy or dysfunctional adipose tissues 
in obesity further secrete proinflammatory cytokines 
including TNFα and IL-6, which can regulate hepcidin 
expression (Cao 2014).

Among inflammatory cytokines secreted by adipose 
tissue under overnutrition, the role of IL-6 in iron metab-
olism has been studied more closely. In addition, the 
expression levels of hepcidin increased in visceral adi-
pose tissue of HFD-induced obesity mice, in parallel with 
IL-6, which occurred in macrophages of adipose tissue, 
not in adipocytes (Gotardo et  al. 2013). Another study 
has found that IL-6 and hepcidin are highly expressed 
in sperms of obese individuals, which may be associated 
with their high expression of miR-155 and miR-122, two 
microRNAs related to inflammation and iron metabolism 
(López et  al. 2018). As an important indicator, IL-6 has 
been widely used in experiments to study the influence 
of obesity on iron metabolism, and it’s generally believed 
that IL-6 takes a part in iron metabolism by regulating 
the expression of hepcidin in obesity.

Almost in the same way as IL-6, TNFα accommodates 
iron homeostasis through regulating hepcidin expres-
sion. It has been shown that the increase expression of 
TNFα can stimulate hepcidin generation, and the appli-
cation of TNFα inhibitors can reduce hepcidin produc-
tion and improve anemia (Atkinson et  al. 2018; Song 
et  al. 2013). Moreover, TNFα significantly down-regu-
lates HJV expression and inhibits liver ferritin protein 
production in a time-dependent manner, which is not via 
the BMP/SMAD signaling pathway (Salama et al. 2012). 
Park et al. (2017) found that the levels of iron and ferritin 
in the liver of C57BL/6J mice were negatively correlated 
with the gene level of the TNFα. It has also been consid-
ered that IL-6 is required for TNFα in the regulation of 
hepcidin (Nikonorov et al. 2015). Therefore, the specific 
mechanism of TNFα in regulating hepcidin expression 

and its effect on iron metabolism still needs to be further 
explored.

Leptin is a protein product encoded by the leptin gene 
(ob), which is secreted predominantly by adipose tissue 
and acts in regulating feeding behavior (Davis et al. 2010). 
In a population study, it has been found that serum lep-
tin level in obese people is higher compared with people 
with normal weight, and is directly correlated with the 
serum hepcidin level (del Giudice et  al. 2009). The cor-
relation was still significant after BMI, gender, puberty, 
IL-6 and other values were adjusted. Yamamoto et  al. 
(2018) have shown that serum hepcidin level signifi-
cantly decreases in ob/ob mice with leptin deficiency and 
db/db mice with leptin receptor deficiency. Chung et al. 
(2007) found that leptin was able to induce hepatic hep-
cidin expression through the IL-6/STAT signaling path-
way, similar to IL-6-mediated hepcidin expression. The 
authors observed that hepcidin mRNA expression was 
significantly enhanced in leptin-treated HuH7 human 
hepatoma cells, whereas this response was significantly 
attenuated after preincubation with Janus Kinase (JAK2) 
inhibitors. Furthermore, hepcidin promoter activity was 
increased in the presence of leptin, whereas this effect 
was reduced by mutating the STAT3 binding motif in 
the hepcidin promoter or co-expressing a dominant 
STAT3-negative mutation, suggesting the involvement 
of leptin in the regulation of hepcidin. Nevertheless, the 
recombinant leptin therapy can significantly restore the 
serum hepcidin level and the hepcidin mRNA expression 
level in the liver, implying an interaction between adipo-
cytes and hepatocytes, which may be mediated by lep-
tin. Matra et al. (2015) further revealed that obesity can 
generate a decrease of iron bioavailability, which may be 
attributed to the impaired iron recycling function caused 
by an elevated level of leptin in obesity.

The adipose tissue of obese patients can not only indi-
rectly regulate the expression of hepcidin by secreting 
adipokines and proinflammatory cytokines, but also 
directly express hepcidin to affect iron homeostasis. 
In murine models fed with HFD, a significant elevated 
hepcidin mRNA level in visceral adipose tissue was 
observed (Gotardo et al. 2013). With an in vitro adipose 
tissue explant stimulation experiment, Bekri et al. (2006) 
uncovered that hepcidin was expressed not only in the 
liver, but also in adipose tissue at mRNA and protein lev-
els, pointing to the potential role of adipose tissue in sys-
temic iron homeostasis. The specific function of hepcidin 
expressed by adipose tissue in vivo still remains unclear. 
Bekri further indicated that the hepcidin mRNA level in 
adipose tissue of obese patients significantly increased, 
and this increase was associated with IL-6 and other 
inflammatory factors (Bekri et  al. 2006). Hence, they 
believe that proinflammatory cytokine may be involved 
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in the development of inflammatory hyposideremia (low 
serum iron levels), in obesity. This finding is of great sig-
nificance for uncovering the relationship between iron 
metabolism disorders and obesity, especially the posi-
tion of adipose tissue should not be ignored (Bekri et al. 
2006). In short, the involvement of adipose tissue in 
iron imbalance in obese individuals deserves attention, 
whether through expressing hepcidin or proinflamma-
tory cytokines/adipokines.

The discovery of obesity and iron deficiency can be 
traced back as far as 1962. When hyposideremia was 
identified in obese adolescents by Wenzel et  al. (1962). 
Clinically, obesity treatment surgery reduces the risk of 
obesity-related complications, but increases the risk of 
nutritional complications because it artificially alters the 
physiological state and anatomy of the gastrointestinal 
tract (Lupoli et al. 2017). In a study (Coimbra et al. 2018) 
of 20 individuals who underwent laparoscopic adjustable 
gastric banding (LAGB) for 13  months, Coimbra et  al. 
observed a significant reduction in body weight and BMI, 
accompanied by decreased levels of hepcidin, ferritin 
and inflammatory factors such as IL-6, from which they 
inferred that decreased levels of IL-6 may be responsible 
for reduced hepcidin. Iron supplementation is also an 
important approach to improve obesity-induced hypofer-
ritinemia, but it does not alter obesity-induced changes 
in adipokines, nor does it alter iron-regulating factor lev-
els in adipose tissue (Gotardo et al. 2016).

Iron metabolism and NAFLD
In concert with the global epidemic of obesity, NAFLD is 
increasing in prevalence and accounts for approximately 
25% of the world’s population (Araújo et al. 2018). More 
alarming is a risen diagnosed NAFLD at increasingly 
younger ages, and it becomes the most common chronic 
liver disorders in both adults and children from all ethnic 
backgrounds (Zhang et al. 2021). To make matters worse, 
both metabolically healthy and metabolically unhealthy 
obesity may be associated with the occurrence and devel-
opment of NAFLD (Lonardo et  al. 2020). In early 2020, 
a panel of international experts from 22 countries pro-
posed a new definition of “metabolic dysfunction-asso-
ciated fatty liver disease (MAFLD)” to replace NAFLD 
(Eslam et al. 2020). Based on the use of NAFLD in a large 
number of previous literatures, this nomenclature is still 
adopted in this review.

The vital role of liver in iron absorption and utilization
Iron can enter liver cells in many forms. Once non-heme 
iron is ingested, Fe3+ is reduced by duodenal cytochrome 
b (Dcytb) and transported to the intestinal tract by 
DMT1. Fe3+ is exported by Fpn, binds to transferrin 
(diferric transferrin, Tf-Fe2+), travels to tissues, and is 

primarily used in the formation of new red blood cells. 
In addition to exogenous intake, macrophages could 
recycle iron from senescent red blood cells. Under the 
precise regulation of hepcidin, The release of iron from 
enterocytes, red blood cells, and macrophages is pre-
cisely controlled by Fpn and transported to various tis-
sues and organs such as the liver (Nemeth et  al. 2004). 
Interactions between hepatic hepcidin and Fpn as a criti-
cal mechanism for preserving iron homeostasis (Nemeth 
et al. 2004). In the absence of transferrin receptor (TfR) 
or in excess of Fe3+, the metal transporter SLC39A14 
(solute carrier family 39 member 14) mediated the entry 
of NTBI into liver cells. In the recent study by Yu et al. 
(2020), SLC39A14 has been shown to promote iron-
induced hepatocyte ferroptosis  in liver-specific Trf 
knockout mice through its ability to transport NTBI, 
which is considered as a novel molecular mechanism of 
liver fibrosis and cirrhosis.

Dysmetabolic iron overload syndrome in NAFLD
An increase in ferritin concentration is a key feature of 
iron dysregulation in NAFLD subjects. Approximately 
one-third of NAFLD patients had higher serum ferritin 
concentrations than normal. Dysmetabolic iron overload 
syndrome (DIOS) is characterized precisely by methe-
moglobinemia and is accompanied by mild iron accu-
mulation in the hepatic reticuloendothelial cells (Aigner 
et al. 2008; Deugnier et al. 2017).

In NAFLD with iron overload, the iron exporter Fpn 
in the liver and the duodenum is lower than in normal 
individuals and hemochromatosis patients (Aigner et al. 
2008). At the same time, duodenal iron absorption was 
reduced in DIOS patients (Zoller et  al. 2001). Low Fpn 
expression is associated with insufficient dietary iron for-
tification in obese patients (Zimmermann et  al. 2008). 
Phagocytosis of fragile erythrocytes by liver Kupffer cells 
could be another mechanism. Erythrocytosis consumes 
heme iron, which contributes to iron buildup in NAFLD, 
then promotes oxidative stress and inflammation. This 
was discovered in HFD-fed rabbits, as well as in  vitro 
phagocytosis of fragile erythrocytes (Sonnweber et  al. 
2012).

According to a randomized cohort study, iron deple-
tion by bloodletting did not improve metabolic and 
hepatic features in DIOS patients, which was related 
with unimproved weight gain, and was not tolerated as 
expected; dietary and lifestyle adjustments remain the 
major interventions for DIOS (Lainé et al. 2017).

Involvement of ferroptosis in NAFLD
Ferroptosis is an iron-dependent non-apoptotic necrotic 
cell death form. This mechanism of cell death is spe-
cifically triggered by the depletion of cysteine, which 
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also results in the depletion of the intracellular pool of 
reduced glutathione (Dixon et  al. 2012). The biological 
features of ferroptosis, as described by Dixon, primar-
ily include ROS buildup, iron accumulation, glutathione 
depletion, inhibited cystine uptake by the system Xc− 
(cystine/glutamate antiporter), etc., accompanied by 
mitochondrial atrophy, mitochondrial cristae reduction 
or even disappearance, nuclear morphology and other 
morphological characteristics.

Ferritin, which stores intracellular Fe3+, is considered 
to be an important negative regulator of ferroptosis. It 
has been shown that the consumption of ferritin causes 
iron to be released into unstable iron pools, resulting 
in a higher sensitivity to ferroptosis. Nuclear receptor 
coactivator 4 (NCOA4) is a recently discovered nuclear 
receptor co-activator that binds to ferritin in the liver 
and transports it to lysosomes to release free iron, which 
is called ferritin-targeted autophagy (Hou et  al. 2016). 
NCOA4 also leads to an increase in iron regulatory pro-
tein (IRP)2 and TfR1 (Mancias et al. 2014), which in turn, 
contributes to the accumulation of large amounts of iron 
that increases the susceptibility to ferroptosis.

Lipid metabolism is closely related to ferroptosis. Phos-
phatidylethanolamines (PEs) containing arachidonic acid 
(AA) or adrenaline (AdA) are key membrane phospho-
lipids that can be oxidized to phospholipid hydroperox-
ides (PE-AA/AdA-OOH) via non-enzymatic reactions, 
thereby driving ferroptosis (Dixon et al. 2015). Loguercio 
et al. showed elevated levels of malondialdehyde (MDA) 
and 4-hydroxynonenal (both markers of lipid peroxida-
tion) in the vast majority of NAFLD patients, a phenom-
enon that was particularly pronounced in nonalcoholic 
steatohepatitis (NASH) patients (Loguercio et  al. 2001). 
Moreover, the accumulation of lipid peroxides and ROS 
promoted ferroptosis in the liver of methionine/choline 
deficiency diet (MCD)-fed mice, and the concurrent use 
of ferroptosis inhibitors alleviated MCD diet-induced 
inflammation and liver fibrosis (Li et  al. 2020). Simi-
larly, In another NASH mouse modeling by MCD feed-
ing, liver steatosis aggravated after RSL3 (ferroptosis 
inducer) administration, whereas the severity of NASH 
was significantly alleviated after treatment with sodium 
selenite (GPX4 activator), deferoxamine (iron-chelating 
agent) and ferrostatin-1 (ferroptosis inhibitor) (Qi et  al. 
2020). Furthermore, in a choline-deficient and ethionine-
supplemented diet-induced NASH model, ferroptosis 
was found to be a preemptive event leading to NASH and 
preceding other types of cell death (Tsurusaki et al. 2019) 
(Fig. 2 ②).

Iron metabolism and diabetes
Diabetes is a chronic disease characterized by hypergly-
cemia, in which the body is unable to produce enough 
insulin or the action of insulin is impaired (Sims et  al. 
2021). As the increasing number of people with diabetes, 
it ranks just behind tumors and cardiovascular diseases 
among chronic diseases in terms of risk to human health 
(Collaboration 2016). An estimated of 537 million adults 
(aged 20–79) are diabetic worldwide, accounting for 10% 
of the world’s population in this age group, according to 
the latest Diabetes Atlas 2021 report from the Interna-
tional Diabetes Federation (IDF). By 2030 and 2045, the 
figures are respectively expected to reach 643 million and 
783 million (IDF 2021).

Iron overload and pancreatic oxidative stress
Tuomainen et al. found a significant correlation between 
increased body iron storage and elevated blood glucose 
in a cohort study as early as 1997 (Tuomainen et  al. 
1997). After that, Ford et al. proposed the hypothesis that 
elevated serum ferritin was associated with an increased 
risk of diabetes in a population study in 1999 (Ford and 
Cogswell 1999), which has been confirmed by subsequent 
studies (Huth et al. 2015; Podmore et al. 2016). Previous 
studies have verified that iron metabolism disorder is one 
of the risk factors of diabetes (Kataria et  al. 2018), and 
researchers further implied the close correlation between 
iron dyshomeostasis and gestational diabetes melli-
tus (Kataria et al. 2018; Wang et al. 2015). Most studies 
have inclined to identify iron overload as a risk factor for 
T2DM (Aregbesola et al. 2013; Montonen et al. 2012; Sun 
et  al. 2013). Excessive iron in the pancreas may lead to 
defects in the synthesis and secretion of insulin, while 
improving pancreatic iron overload can reduce oxidative 
stress and ameliorate diabetic complications (Minamiy-
ama et al. 2010). Although the exact mechanism of iron 
metabolic disturbance in the development of diabetes 
is not well understood, oxidative stress is thought to be 
one of the core mechanisms that correlate excess iron 
with a higher incidence of T2DM via mediating several 
key events such as insulin resistance and β cells dysfunc-
tion (Horinouchi et al. 2019). Pancreatic β-cells are rich 
in highly active mitochondria and are highly sensitive to 
ROS (Shirasuga et al. 1989). Further correlation analysis 
showed that superoxide dismutase (SOD), MDA, glu-
tathione (GSH), and GPX were all correlated to Tf and 
TfR levels, among which MDA and GPX were correlated 
with iron content, indicating that iron metabolism dis-
order is involved in the process of oxidative stress (Bao 
et al. 2012; Huth et al. 2015). The study by Blesia et al. has 
shown that exposure to high iron (100 µM) results in cel-
lular oxidative damage and initiates insulin secretory dys-
function in pancreatic β-cells by reducing the expression 
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of synaptosomal associated protein 25, a key protein 
involved in the insulin exocytosis machinery (Blesia et al. 
2021). It is noteworthy that other more severe iron over-
load models affecting hepcidin expression, such as the 
hepcidin-resistant model bearing the p.C326S mutation 
in Fpn, as well as the Hampsand HJV knockout model, 
do not show liver disease or endocrine problems despite 
pancreatic iron accumulation, probably due to greater 
resistance to oxidative stress injury of these mouse mod-
els (Altamura et  al. 2020). The pancreatic and duodenal 
homeobox  1 (PDX1) and V-Maf avian musculoaponeu-
rotic fibrosarcoma oncogene homolog A (MafA), two 
critical transcription factors involved in the control of 
insulin gene expression, are both targets for ROS (Cnop 
et al. 2014), and decreased hepcidin expression in MIN6 
cells leads to inhibited insulin synthesis via iron overload 
and decreased PDX1 expression (Mao et  al. 2017; Shu 
et al. 2019).

The chronic hyperglycemia status will increase the 
expression of stress genes, including HO-1 gene (Li 
et al. 2015). The human HO-1 gene has a GT site in the 
proximal promoter region as well as transcription fac-
tor nuclear factor κB (NF-κB) and activator protein (AP-
2) site (Chau 2015). In T2DM, the HO-1 gene is highly 
active and exhibits the characteristic of polymorphic 
gene promoters in its gene sequence, which leads to an 
increase in iron storage in the body. This is mainly due 
to the active participation of HO-1 in the degradation of 
haemachrome, while iron released during the degrada-
tion process is potentially cytotoxic (Ryter 2021). There-
fore, an increase in the expression of HO-1 gene causes 
iron overload in the body to promote the occurrence of 
oxidative stress and stimulate the development of T2DM. 
As mentioned above, as a strong oxidizing agent, iron can 
promote the occurrence of oxidative stress, and excessive 
oxidative stress is one of the precursors of T2DM (Jin 
et  al. 2013). Thus, hyperglycemia increases HO-1 gene 
expression and exacerbates iron overload, and vice versa.

Iron overload and Adenosine 5′‑monophosphate‑activated 
protein kinase (AMPK) activity
AMPK is a negative feedback regulator of insulin secre-
tion in β-cells, and insulin secretion will be inhibited 
when the activity of AMPK increases. Consequently, 
when the concentration of serum glucose drops, the gene 
expression of active AMPK will be increased, thereby 
inhibiting insulin secretion (Hardie 2013); while the 
activity of AMPK is gradually reduced with the increase 
of glucose concentration. However, in skeletal muscle 
and liver, the activated AMPK can overcome a reduc-
tion in insulin secretion arising from the activation of 
AMPK in β-cells induced by HFD, and ultimately leading 
to an increase in glucose tolerance by stimulating glucose 

uptake and fatty acid oxidation in peripheral tissues, 
and inhibiting gluconeogenesis in the liver (Huang et al. 
2011). In the mice model of hemochromatosis established 
by Huang et  al., iron overload can reduce the oxidation 
of glucose and induce the phosphorylation of AMPK in 
skeletal muscle. Isolated soleus muscle from hemochro-
matosis  mice demonstrated an absolute increase in the 
capacity for fatty acid oxidation compared with wild type, 
which was consistent with AMPK role in regulating fatty 
acid oxidation (Huang et al. 2011). The difference in func-
tions between AMPK in β-cells and skeletal muscle and 
liver might be caused by the expression of different sub-
types of AMPK in peripheral tissues of insulin produc-
tion (β-cells) and insulin response (Kjøbsted et al. 2016).

Iron overload and pancreatic islet amylin
Another mechanism by which iron overload may affect 
β-cells function and survival is via amylin. Misfolding and 
aggregate deposition of human islet amyloid polypeptide 
(hIAPP) in the extracellular matrix and within β-cells 
have been detected post-mortem in the pancreas of 90% 
of subjects affected by T2DM (Clark et al. 1988; Röcken 
et al. 1992), where the polypeptide shows cytotoxic activ-
ity caused by the disruption of the cell membrane, per-
turbed ion homeostasis, endoplasmic reticulum stress, 
mitochondrial damage and final oxidative stress (Bishoyi 
et al. 2021). Intriguingly, iron has been shown to enhance 
amylin fB-sheet formation, triggering their aggregate 
deposition (Alghrably et  al. 2019). Furthermore, heme 
can also bind to amylin to form a complex that leads to 
H2O2 formation via oxidative stress (Mukherjee and Dey 
2013), thus fostering ROS-mediated β-cells failure (Fig. 2 
③).

Iron metabolism and coronary atherosclerotic 
heart disease (CAD)
CAD is the leading cause of death in both developing 
and developed countries, according to the World Health 
Organization, with an estimated 23.6 million deaths per 
year by 2030. CAD is caused by atherosclerotic lesions 
in the coronary arteries that narrow or block the lumen 
of the vessels, resulting in ischemia, hypoxia or necrosis 
of the myocardium, often referred to as “coronary heart 
disease”. Risk factors for cardiovascular disease such as 
elevated cholesterol and hypertension are highly preva-
lent among overweight and obese individuals (La Sala 
and Pontiroli 2020). It has been suggested that children 
and adolescents with severe obesity have a significant 
incidence of cardiovascular disease and a higher risk of 
all-cause mortality compared to those with mild obesity 
(Bendor et al. 2020).

Iron enters cardiomyocytes via the TfR1, as well as 
additional channels such as the T-type calcium channel 
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(TTCC), DMT1, L-type voltage-dependent Ca2+ chan-
nel (LTCC), Zinc–Iron regulatory protein (ZIP)8, and 14. 
The Fpn is the only protein that extrudes iron from heart 
muscle cells. Specially, H-ferritin-like protein is present 
in cardiac mitochondria for iron storage. Mitochondrial 
ferritin (mtFT) has been shown to protect cardiomyo-
cytes from oxidative stress induced by cardiac injury by 
increasing mitochondrial sensitivity (Li et  al. 2017). 
Besides, IRP is responsible for modulating iron homeo-
stasis in cardiomyocytes. When myocardial iron level is 
low, IRP expression is increased to reduce Fpn and fer-
ritin expression, in turn inhibiting iron export and stor-
age, and to boost TfR1 expression, so increasing cell iron 
availability.

Both iron deficiency and iron overload are associ-
ated with cardiovascular disease risk (Basuli et  al. 2014; 
Lapice et  al. 2013). As early as forty years ago, Sullivan 
proposed that the risk of cardiovascular disease was 
positively correlated with iron accumulation in ath-
erosclerosis (Sullivan 1981). According to Vinchi’s lat-
est research, iron heavily deposited in arterial mediums 
is associated with plaque formation, vascular oxidative 
stress and dysfunction (Vinchi et al. 2020). NTBI induces 
iron overload in cultured vascular cells, which leads to 
ROS production and apoptosis, and stimulates abun-
dant monocyte chemotactic protein (MCP)1-mediated 
monocyte aggregation, a potential intrinsic trigger of 
atherosclerosis (Vinchi et al. 2020). A new report found 
that the Sirtuin-1 (SIRT1), an autophagy agent in foam 
cells, could block ferroptosis incited by excessive iron 
(Su et al. 2021). However, superfluous iron restrains the 
SIRT1-autophagy pivot of froth cells and the activity of 
GPX4, which together incite ferroptosis of foam cells (Su 
et  al. 2021). By adding the exogenous ox-LDL and fer-
ric ammonium citrate to THP-1 cells, Su et al. affirmed 
that unnecessary iron prompted ferroptosis in froth 
cells. Although the mechanism by which iron overload 
leads to coronary atherosclerosis is not fully understood, 
restricting dietary iron or using iron chelation therapy 
is supposed to mitigate atherosclerosis (Su et  al. 2021). 
Therefore, the overwhelming evidence supports a link 
between iron overload and CAD. In addition, coronary 
artery calcification is an independent risk factor for CAD 
and is closely associated with plaque rupture, while fer-
roptosis can also lead to CAD by promoting vascular cal-
cification (Durham et al. 2018).

The iron hypothesis remains controversial because the 
mechanism by which iron accumulation causes CAD is 
not fully understood. Omar Saeed et al. have uncovered 
that pharmacological inhibition of hepcidin in C57BL/6J 
mice (increased iron in tissues) was able to increase 
cholesterol efflux from macrophages, reduce foam cell 
formation, and ultimately slow down the process of 

atherosclerosis (Saeed et  al. 2012). An epidemiological 
study using a Mendelian randomization approach sup-
ports the notion that higher iron levels can reduce the 
risk of CAD (Gill et  al. 2017). Surprisingly, in a recent 
advance in iron metabolism research, Léon Kautz’s team 
found no direct correlation between iron levels in mice 
and the risk of atherosclerosis (Kautz et al. 2013) (Fig. 2 
④).

Iron metabolism and cardiomyopathy
Obesity cardiomyopathy is defined as myocardial 
changes associated with obesity, independent of other 
heart diseases or risk factors (Wong and Marwick 2007). 
Originally, obese cardiomyopathy was defined as heart 
failure primarily caused by obesity and was thought to be 
confined to severely obese individuals. However, this def-
inition was later extended to include cardiomyopathies 
in obese that could not be explained by other etiologies 
such as hypertension, diabetes mellitus, or CAD (Wong 
and Marwick 2007). Thus, obesity as an important risk 
factor for the development of heart failure has been iden-
tified (Hao et  al. 2019; Kenchaiah et  al. 2002). This was 
in response to a growing body of evidence highlighting 
myocardial alterations in people with mild to moderate 
obesity. Cardiomyocytes are terminally differentiated 
cells, which can’t be regenerated. Once dead, they can 
only be replaced by scar tissue, leading to structural and 
functional impairment of the heart and eventually to the 
development of heart failure (Smits et al. 2018).

Iron overload and cardiomyopathy
Likewise, iron overload may also damage the heart, lead-
ing to cardiomyopathy. As mentioned earlier, exces-
sive iron acts as a catalyst in Fenton reaction to induce 
oxidative stress and lead to ROS accumulation, which 
interferes with Ca2+ homeostasis in cardiomyocytes and 
multiple ion transporters responsible for myocardial 
electrical activity, sequentially leading to cardiac dias-
tolic and systolic dysfunction and arrhythmia (Kawabata 
2019). The increase in mitochondrial ROS production 
also leads to the depolarization of mitochondrial mem-
brane potential and the opening of mitochondrial per-
meability transition pore, which causes cell rupture and 
eventually leads to cardiac dysfunction and cardiomyo-
pathy (Kumfu et  al. 2012). Furthermore, the accumula-
tion of iron in the heart has been supposed to depend 
on the penetration of ferrous iron (Fe2+) through the 
L-type voltage-dependent Ca2+ channel (LVDCC), and 
the transgenic mice with iron overload and heart-specific 
overexpression of LVDCC α1 subunit exhibited higher 
levels of myocardial molten iron and oxidative stress, 
leading to more severe impairment of heart function; 
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while inhibition of LVDCC α1 had a protective effect on 
myocardium (Oudit et al. 2003).

Ferroptosis and myocardial injury
Wang et  al. have demonstrated that the expression of 
mixed lineage kinase (MLK)3, a member of MAP3K 
family, is significantly increased in the model of myo-
cardial hypertrophy induced by pressure load in mice. 
A subsequent study has indicated that MLK3 not only 
regulates the inflammatory response induced by pyrop-
tosis through NF-κB/NLRP3 signaling pathway, but 
also modulates ferroptosis induced by oxidative stress 
through JNK/p53 signaling pathway. Both of these bio-
logical events aggravate myocardial hypertrophy and 
fibrosis, while miR-351 plays a protective role in myocar-
dial hypertrophy by directly acting on MLK3 to inhibit 
the occurrence of pyroptosis and ferroptosis (Wang et al. 
2020). Beclin1, also known as BECN, is the homologous 
gene of yeast autophagy gene Atg6/Vps30, which is an 
essential molecule in the process of autophagy. Yin et al. 
discovered that mice with insufficient single gene dosage 
of Beclin1 could withstand the myocardial hypertrophy 
induced by low temperature. With further experiments 
in vivo and in vitro, it has turned out that insufficient sin-
gle gene dosage of Beclin1 raises the level of solute carrier 
family 7 member 11(SLC7A11) and GPX4, and lowers 
the level of NCOA4, a ferritin degradation autophagic 
cargo receptor. The increased NCOA4, which is closely 
related to autophagy, can aggravate iron accumulation 
and lipid peroxidation, thus promoting the occurrence 
of ferroptosis and exacerbating myocardial hypertrophy 
(Yin et al. 2020). Thereby, these two studies have revealed 
novel mediating actions of MLK3 and Beclin1 between 
ferroptosis and myocardial injury.

In mice with heart-specific ferritin heavy chain (FTH) 
gene knockout, decreased iron level and enhanced oxida-
tive stress in the heart tissue were observed, which lead 
to mild cardiac injury after aging; while further high-iron 
diet would cause hypertrophic cardiomyopathy, and fer-
roptosis was involved in the pathophysiological process 
of the disease. However, over-expression of SLC7A11 
in cardiomyocytes may inhibit ferroptosis of the myo-
cardium (Fang et  al. 2020). Collectively, inhibition of 
ferroptosis provides a new intervention target for the 
prevention and treatment of cardiomyopathy (Fig. 2 ④).

Conclusion
At present, iron metabolism has been extensively stud-
ied in obesity-related metabolic disorders, while fer-
roptosis is still in its infancy. Ferroptosis is a unique cell 
death pathway that is iron-dependent, non-apoptotic, 

non-necrotic and non-autophagic (Bogdan et  al. 2016). 
Although much progress has been made in recent years 
in the study of ferroptosis in the above-mentioned dis-
eases, many questions remain to be addressed. At pre-
sent, it is not clear whether iron metabolism will affect 
lipid metabolism. What are the mechanisms of systemic 
and intracellular iron homeostasis crosstalk? These dis-
eases share upstream factors, but what are the down-
stream pathways? These may be new research directions 
in the future.

In view of the great role of iron metabolism in meta-
bolic diseases, in-depth studies of the underlying mecha-
nism are of considerable significance for the prevention, 
diagnosis, treatment, and prognosis of obesity and its 
complications, and can provide medical practitioners 
with more clinical ideas.
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