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Abstract 

Background:  Analyzing disease–disease relationships plays an important role for understanding etiology, disease 
classification, and drug repositioning. However, as cardiovascular diseases with causative links, the molecular relation‑
ship among stable angina pectoris (SAP), ischemic cardiomyopathy (ICM) and chronic heart failure (CHF) is not clear.

Methods:  In this study, by integrating the multi-database data, we constructed paired disease progression mod‑
ules (PDPMs) to identified relationship among SAP, ICM and CHF based on module reconstruction pairs (MRPs) of 
K-value calculation (a Euclidean distance optimization by integrating module topology parameters and their weights) 
methods. Finally, enrichment analysis, literature validation and structural variation (SV) were performed to verify the 
relationship between the three diseases in PDPMs.

Results:  Total 16 PDPMs were found with K > 0.3777 among SAP, ICM and CHF, in which 6 pairs in SAP–ICM, 5 pairs 
for both ICM–CHF and SAP–CHF. SAP–ICM was the most closely related by having the smallest average K-value 
(K = 0.3899) while the maximum is SAP–CHF (K = 0.4006). According to the function of the validation gene, inflamma‑
tory response were through each stage of SAP–ICM–CHF, while SAP–ICM was uniquely involved in fibrosis, and genes 
were related in affecting the upstream of PI3K–Akt signaling pathway. 4 of the 11 genes (FLT1, KDR, ANGPT2 and PGF) 
in SAP–ICM–CHF related to angiogenesis in HIF-1 signaling pathway. Furthermore, we identified 62.96% SVs were pro‑
tein deletion in SAP–ICM–CHF, and 53.85% SVs were defined as protein replication in SAP–ICM, while ICM–CHF genes 
were mainly affected by protein deletion.

Conclusion:  The PDPMs analysis approach combined with genomic structural variation provides a new avenue for 
determining target associations contributing to disease progression and reveals that inflammation and angiogenesis 
may be important links among SAP, ICM and CHF progression.
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Background
Disease–disease relationships play crucial roles in patho-
biological manifestations of diseases and precision treat-
ment to managing those conditions. Therefore, exploring 
associations of diseases enhances knowledge of disease 
relationships, which could further improve approaches 
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to disease diagnosis, prognosis, and treatment (Iida et al. 
2020; Suratanee and Plaimas 2015). Like other complex 
diseases, stable angina pectoris (SAP), ischemic car-
diomyopathy (ICM) and chronic heart failure (CHF) 
are caused by interactions of environmental factors and 
genetic (Dang et al. 2020). SAP is a chronic medical con-
dition which is generally regarded as one of the first man-
ifestations or warning signs of underlying coronary artery 
disease (CAD), with an annual mortality rate ranging 
between 1.2 and 2.4% (Gillen and Goyal 2021; Montale-
scot et al. 2013). When ICM describes ineffective blood 
pumping by the heart as a result of ischemic damage to 
the myocardium, which is most often caused by CAD 
(Bhandari et  al. 2021; Sekulic et  al. 2019). In addition, 
Heart failure (HF) as the terminal state of various heart 
diseases with a prevalence of around 26  million world-
wide (Wolfson et  al. 2018), and ICM is regarded as the 
leading cause, accounting for approximately for more 
than 60% of systolic HF cases in industrialized countries 
(Alimadadi et al. 2020). Moreover, some common patho-
logical processes have been detected in SAP, ICM, and 
CHF: such as inflammation and oxidative stress (Daiber 
et al. 2021), microvascular dysfunction, cardiac ischemia 
(Tousoulis et  al. 2013), extracellular matrix destruction 
with the participation of matrix metalloproteinases and 
other mechanisms are being discussed (Bansal et al. 2019; 
Chumakova et al. 2021). Therefore, there are disease pro-
gression process and causative links among the SAP, ICM 
and CHF. However, no studies have examined the rela-
tionships between these three diseases.

A network-based approach is useful for analyzing 
disease–disease relationships and many methods are 
derived (Iida et al. 2020), such as MiRNA-disease Associ-
ation Prediction method (Sumathipala and Weiss 2020), 
dynamic network biomarker method (Yang et  al. 2018), 
and meta-path-based Disease Network capturing algo-
rithm method et al. (Jin et al. 2019). Modularity, one of 
the most significant global characteristics of biological 
networks, has been the subject of intense investigation 
in systems biology for more than two decades (Grunberg 
and Del Vecchio 2020; He et  al. 2019). This principle is 
important because it helps to account for the robustness 
and reliability of biological systems (Kashtan and Alon 
2005). Recently it has been studied that similar genetic 
diseases could appear as modules in a human disease 
network (Ni et  al. 2020). The modularity significantly 
correlated with disease classification, that is, disease phe-
notypes within a single module tended to fall in the same 
disease class (Jiang et  al. 2008). Evidence from many 
sources suggests that diseases with overlapping clini-
cal phenotypes are caused by mutations of functionally 
related genes (Brunner and van Driel 2004). Function-
ally related genes generally indicate genes which belong 

to the same functional modules, such as co-expression 
modules, protein complexes or cellular pathways. The 
exploration of modular structure has been a key factor in 
understanding the complexity of disease networks (Chen 
et al. 2016). There is growing evidence that modular units 
of development were highly preserved and recombined 
during evolution (Lacquaniti et al. 2013). With the rapid 
progress in probing into the detailed structural model of 
modular networks, flexible modular organization mani-
fests a key adaptive balancing ability of allosterically reg-
ulating or reconstructing intermodular and intramodular 
states to uncover the novel biological alterations beyond 
engineering properties (Bowsher 2011; Del Mondo et al. 
2009; Yu et al. 2016). In our previous study, we proposed 
the concept of restructured modules (RMs) was defined 
as those with larger architectural variation to quanti-
fying the polyphyletic modular flexibility (Patent No: 
ZL201610826031.1) (Yu et al. 2016). The RMs may pro-
vide valuable structural change information about dis-
ease network. Therefore, disease progress relationships 
among the three diseases may be identified using this 
methods. In addition, genomic variability is a window on 
the origins of complex disease, cardiovascular disease in 
particular (Erdmann et al, 2018; Lin 2021). To understand 
the mechanisms of diseases, find pathogenic targets, and 
carry out personalized precision medicine, it is critical 
to detect such variations (Bennett et  al. 2019; De et  al. 
2019). Thus we included modular networks and genomic 
structural variation (SV) information in the models to 
determine target associations contributing to the disease 
progress.

In our research, by integrating the multi-database 
data, we constructed paired disease progression modules 
(PDPMs) to identified relationship among SAP, ICM and 
CHF based on RMs methods. The relevance of the identi-
fied PDPMs with the diseases was validated by pathway 
enrichment analysis, functional analysis and literature. 
The understanding of mechanisms linking SAP, ICM and 
CHF progression is crucial for identifying specific action-
able therapeutic targets.

Methods
Constructing disease‑associated networks
List of disease-related genes were obtained from National 
Center for Biotechnology Information (NCBI) database 
(https://​www.​ncbi.​nlm.​nih.​gov/) and Genecards data-
base (https://​www.​genec​ards.​org/). We used disease-
associated genes to construct three disease-associated 
networks using the STRING 11.5 database (https://​
string-​db.​org/). Cytoscape software v3.8.2 (https://​cytos​
cape.​org/) was utilized to visualize the networks and ana-
lyze the network parameters.

https://www.ncbi.nlm.nih.gov/
https://www.genecards.org/
https://string-db.org/
https://string-db.org/
https://cytoscape.org/
https://cytoscape.org/
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Identification of functional modules in different 
disease‑associated networks
Network module division was performed using 
“MCODE”, “Community Clustering (GLay)”, and “MCL” 
(Chen et  al. 2021). For MCODE, the parameters (Node 
Score Cutoff = 0.2, Node Score Threshold = 0.2, Connec-
tivity Threshold = 2, Degree Cutoff = 2, Core Threshold 
K = 2, Max. Depth = 100) were used as the criteria for 
network module screening (Liu et  al. 2019). We calcu-
lated the entropy of the network to select approach with 
the minimum entropy to divide the three disease-con-
nected networks into modules (Chen et al. 2021).

Identifying modules reconstructional pairs (MRPs)
The MRPs was found based on the overlapping nodes 
between each two disease modules. For example, for 
SAP- vs ICM-associated networks, (1) Overlapping 
nodes were detected between SAP- and ICM-disease 
modules. (2) We call a module pair with at least one node 
overlapping as a MRP.

Calculating the K‑value of the MRPs
The degree of reconstruction of MRPs between diseases 
was assessed with the K-value, which is based on Euclid-
ean distance optimization (Liu et al. 2021).

Step 1: Firstly, non-dimensionalize the raw data. Due to 
the large dimensional differences between different indi-
cators, we need to standardize the raw data first. In this 
study, the values of average neighbor nodes, characteris-
tic path lengths, nodes and edges need to be normalized 
to between 0–1. Following the extreme value method in 
Gregory and Jackson (Gregory and Jackson 1992), we use 
it as the method of non-dimensionalize, which is shown 
in Eqs. (1) and (2) below (Wang et al. 2021b).

Step 2: Considering the different meaning and multi-
plicity of each variable and eliminating the heterogeneity 
caused by multidimensional, we calculate the relative dis-
tance di of each variable.

Step 3: The entropy weight method measures the 
amount of information provided by each index from a 
mathematical point of view and determines the weight 

(1)Cost index : Di =
fimax − fi

fimax − fimin

(2)Benefit index : Di =
fi− fimin

fimax − fimin

(3)di =
(ai − bi)

2

(a1 − b1)
2
+ · · · + (an − bn)

2

of each index on this basis. As an objective weighting 
method, it can reduce the interference from human fac-
tors on the evaluation results, scientifically calculate the 
entropy weight of each index, and produce more scien-
tific evaluation results (Wang et al. 2021a). The SPSSAU 
project (Version 21.0), an online application software 
retrieved from https://​www.​spssau.​com, was used to cal-
culate weight vector by entropy (Lin et al. 2020).

Step 4: Based on the module topology parameters and 
the determination of their weights, we calculated K-value 
follow Eqs. (4)

Identifying paired disease progression modules (PDPMs)
We calculated the K-value statistical distribution ( ki) 
between modules in the range of 0–100% follow Eqs. (5). 
Previous studies have shown that the golden section 
method with fast convergence is a classical algorithm in 
optimization calculation, which is famous for its sim-
plicity and remarkable effect (Santos et  al. 2020; Julong 
and Fucai 2005). Therefore, we took the golden section 
method (61.8%) as the dividing point to divide the ki . 
PDPMs were defined more than 61.8% of the ki of MRPs.

Functional enrichment analysis of PDPMs
The enrichment analysis of KEGG pathways and biologi-
cal processes in the modules and disease-related genes 
was performed using metaspace (https://​metas​cape.​
org/). (on Aug. 1, 2021) (Min Overlap: 3; P Value Cutoff: 
0.01; Min Enrichment 1.5) (Zhang et al. 2020).

Validation of overlapping genes in the PDPMs by text 
mining in the literature
We used PubMed database and CTD database to verify 
the overlapping genes in the PDPMs by searching the lit-
erature with the terms “stable angina pectoris”, “ischemic 
cardiomyopathy”, “chronic heart failure” and “gene ID”.

Database of genomic variants
For information on the genomic structural variation 
observed in the population, we used the Database of 
Genomic Variants (DGV) (http://​dgv.​tcag.​ca/​dgv/​app/​
home). DGV provides high‐quality structural variations, 
defined as a region of DNA elements approximately 1 kb 
and larger and can include inversions and balanced trans-
locations or genomic imbalances (insertions and dele-
tions), commonly referred to as copy number variants. 
The content of DGV represents SV identified in healthy 

(4)K = w1d1 + · · ·wndn

(5)ki =
ki − kmin

kmax − kmin
× %

https://www.spssau.com
https://metascape.org/
https://metascape.org/
http://dgv.tcag.ca/dgv/app/home
http://dgv.tcag.ca/dgv/app/home
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control samples from large published cohorts and inte-
grated by the DGV team (Dafniet et al. 2020). We worked 
with the latest release available from the GRCh37 (hg19) 
assembly of supporting variants section and gnomAD_
Structural_Variants study (on January 21, 2022). We 
extracted SVs with variant subtypes, including “complex”, 
“inversion”, “loss” and “gain”. SVs with unknown informa-
tion were removed.

Results
Disease‑related targets
From the NCBI database and the Genecard database, 
a total of 288 ICM disease-related proteins, 417 SAP 
disease-related proteins and 670 CHF disease-related 
proteins were obtained (Additional file  1: Table  S1). 56 
overlapping genes were detected among three diseases, 
which accounted for 19.44% (56/288) of the identified 
ICM-associated genes, 13.43% (56/417) of SAP-associ-
ated genes, and 8.36% (56/670) of CHF-associated genes. 
In addition, 24 overlapping genes were detected between 
ICM‐ and SAP‐related genes, 54 between ICM- and 
CHF-related genes, and 103 between SAP- and CHF-
related genes, respectively (Fig.  1a, Additional file  2: 
Table S2).

Constructing disease‑associated networks
ICM-, SAP-, and CHF-associated PPI networks were 
constructed, involving 259, 390, and 615 nodes, respec-
tively (Fig.  1b). The multiple topological parameters of 
the three disease networks are listed in (Fig.  1c). CHF-
associated networks contained the maximum number 
of nodes (genes) and edges (interactions). However, the 
SAP-associated network had the biggest network den-
sity (0.131), network centralization (0.556) and cluster-
ing coefficient (0.552). Therefore, an analysis of the entire 
network might not be sufficient to reveal the pathophysi-
ological changes among the three diseases.

Identification of functional modules
We selected MCODE with the minimum entropy among 
the three disease-networks to divide the three disease-
connected networks into modules (Fig. 1d). 9, 10, and 16 
modules (nodes ≥ 4) were identified from ICM-, SAP-, 
and CHF-associated networks, respectively (Fig.  2a). 
Module details were provided in Additional file  2: 
Table  S3. Topological attributes of disease-associated 
modules are provided in Additional file 2: Table S4.

Identification of MRPs
Figure  2A shows the results of MRPs. Compared with 
ICM-associated modules, SAP-associated networks had 
eight reconstructional modules. ICM-associated net-
works had seven reconstructional modules and the ICM9 

module was new module compared with CHF-associated 
modules. Compared with SAP-associated networks, nine 
reconstruction modules are in CHF-associated modules.

The MRPs among ICM-, SAP- and CHF-associated 
networks were shown in Additional file  2: Table  S5 in 
detail. There were 14 MRPs between ICM- and SAP-
related modules, 21 between SAP- and CHF-related 
modules and 17 MRPs between ICM- and CHF-related 
modules. We found that the splitting and merging 
between modules occurred in the process of disease pro-
gression. For example, the ICM9 module has five nodes, 
which are scattered among the CHF1, CHF2 and CHF4 
modules. We considered that this change was the split-
ting of modules in the disease progression. Three nodes 
of the CHF10 module are from the SAP4 and SAP7 mod-
ules, which was considered to be the merging of some 
nodes of several modules of SAP.

Quantitative comparative analysis of module 
reconstruction of K‑value model
The K-values of MRPs among the three diseases are show 
in Fig. 2b. In general, the K-value was mainly distributed 
between 0.35–0.4, and the average K-value of each stage 
was approximately 0.36. Additional file 2: Table S6 shows 
the weight values calculated by entropy weight method. 
The details of the normalization of disease-related mod-
ule parameters and K-values are shown in Additional 
file 2: Tables S7 and S8, respectively.

Identification of PDPMs
The smaller the K-value is, the smaller the overall differ-
ence between the two modules, and the two modules are 
similar in structure. Combined with the statistical distri-
bution and golden section method, it is considered that 
K > 0.3777 and was PDPMs (Additional file 2: Table S8). 
Finally, sixteen PDPMs were involved, specifically 6 
pairs in SAP–ICM and 5 pairs each for ICM–CHF and 
SAP–CHF. SAP–ICM was more closely related by hav-
ing the smallest average K-value (K = 0.3899), followed 
by ICM–CHF (K = 0.3948) and SAP–CHF (K = 0.4006) 
(Fig. 2c). Moreover, PDPMSAP7–ICM8, PDPMICM9–CHF1 and 
PDPMSAP2–CHF1 were the PDPMs with the largest K-value 
in the SAP–ICM, ICM–CHF and SAP–CHF stages, 
respectively.

In the progress of SAP–ICM–CHF, modules ICM1 and 
ICM8 are common modules, which involve five genes 
affecting the whole process (AGT, REN, CDH5, PGF, and 
FLT1), of which modules ICM5 and ICM7 are specific to 
the SAP–ICM, involving ADAMTS9 and NPPA, mod-
ules ICM6 and ICM9 are specific to ICM–CHF, involving 
STAT1, ADORAL and APLN. At the same time, six genes 
were observed in three stages: ACE, CXCL8, IL10, CRP, 
KDR, and ANGPT2 (Fig. 3).
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GO functional enrichment analysis in SAP, ICM, and CHF
Based on SAP-, ICM-, and CHF-related genes, the top 
20 GO biological process clusters with their representa-
tive enriched terms are shown in Fig. 4. In SAP, response 
to wounding, regulation of inflammatory response and 
leukocyte migration were the top three functional bio-
logical processes (Fig.  4a). Blood vessel development, 
circulatory system process and response to growth factor 
accounted for most of the functional annotations in ICM 
(Fig.  4b). In CHF, blood circulation, blood vessel devel-
opment and response to oxygen levels were noted to be 

the major functional annotations (Fig.  4c). Response to 
wounding, response to oxygen levels, response to growth 
factor, response to inorganic substance and regulation of 
cytokine production were the overlapping GO biological 
processes shared by all three diseases (Fig. 4d).

In the 16 PDPMs, SAP-related modules enriched 69 
and 52 biological processes in two different stages, 29 and 
36 in ICM-related modules, 53 and 79 in CHF-related 
modules (Fig.  4e).The number of overlapping biological 
processes between any two pathological stages (SAP–
ICM, ICM–CHF and SAP–CHF) was 11, 8, and 16, 

Fig. 1  Comparison of disease-related genes and network analysis in SAP, ICM, and CHF. a Comparison of disease-related genes in SAP, ICM, and 
CHF. b The network of SAP-, ICM- and CHF-related genes. c Topological parameters of the three networks. d The entropy calculation of the network 
in SAP, ICM, and CHF
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respectively. A total of 5 overlapping biological processes 
were identified among the three pathological stages and 
SAP–ICM, while 3 were identified in ICM–CHF (Fig. 4f 
and Additional file 2: Table S9).

KEGG pathway analysis in SAP, ICM, and CHF
Based on SAP-, ICM-, and CHF-related genes, the top 
20 KEGG pathway clusters with their representative 
enriched terms are shown in Fig. 5. In SAP, cytokine–
cytokine receptor interaction, complement and coagu-
lation cascades and malaria were the top three pathways 
(Fig.  5a). Focal adhesion, the AGE-RAGE signaling 
pathway in diabetic complications and pathways in can-
cer accounted for most of the KEGG pathways in ICM 
(Fig.  5b). In CHF, cytokine–cytokine receptor inter-
action, Neuroactive ligand–receptor interaction and 
Pathways in cancer noted to be the major pathways 
(Fig. 5c). From previous studies, there were 6 pathways 
in the top 3 KEGG pathways for each disease reported 
the correlations as shown in the Additional file  2: 

Table  S10. Malaria, pathways in cancer and the HIF-1 
signaling pathway were the overlapping KEGG path-
ways shared by all three diseases (Fig. 5d).

In the 16 PDPMs, SAP-related modules enriched 40 
and 37 pathways in two different stages, 21 and 25 in 
ICM-related modules, 46 and 50 in CHF-related mod-
ules (Fig.  5e).The number of overlapping KEGG path-
ways between any two pathological stages (SAP–ICM, 
ICM–CHF and SAP–CHF) was 9, 10, and 15, respec-
tively. A total of 6 overlapping pathways were identi-
fied among the three pathological stages, including 
3 disease-related overlapping pathways, of which the 
HIF-1 signaling pathway contained the most overlap-
ping genes for PDPMs (Fig.  5f and Additional file  2: 
Table  S9).There were 3 and 4 unique KEGG pathways 
in SAP–ICM and ICM–CHF, respectively (Fig.  5f ). In 
the 6 overlapping KEGG pathways in SAP–ICM–CHF 
in PDPMs, half of them have been reported the certain 
biological connections with the 3 diseases as shown in 
Additional file 2: Table S11.

Fig. 2  Identification of module and module reconstructional pairs. a Identification of module and module reconstructional pairs. b The distribution 
of the K-value. c The distribution of the K-values of the PDPMs
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Validation of overlapping genes in the PDPMs based 
on a literature search
In our study, after verifying the overlapping genes in the 
PubMed database and CTD database, we obtained 10 val-
idation genes except CDH5 (Fig. 6a). It is mainly divided 
into four parts according to the function: three genes 
belong to blood pressure and electronic balance, and 4 
genes belong to angiogenesis and inflammation. A total 
of 66.67% (18/27) of genes were validated in SAP–ICM. 

In addition to inflammation and angiogenesis, fibrosis 
was also among the top three functions, while 75% (3/4) 
of the verified genes in ICM–CHF were mainly associ-
ated with inflammation (Fig.  6b). The HIF-1 signaling 
pathway is closely related to hypoxia–ischemia in cardio-
vascular diseases, and we found four genes (FLT1, KDR, 
ANGPT2, and PGF) related to angiogenesis in the path-
way (Fig.  6c) (Zhang et  al. 2018). The SAP–ICM genes 
mainly affects the upstream of the PI3K–AKT signaling 

Fig. 3  Identification of paired disease progression modules
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pathway (Fig.  6d). Two of the four genes in ICM–CHF 
were involved in the Neuroactive ligand-receptor interac-
tion signaling pathway.

Structural variations (SVs) on targets associated 
with PDPMs
Matching the 10 verified genes of SAP–ICM–CHF with 
the data from the DGV, we identified 8 targets hav-
ing SVs, 37.04% (10/27) SVs were defined as “gain” 

(replication of the protein) and 62.96% (17/27) SVs 
defined as “loss” (deletion of the protein). Four genes 
(FLT1, KDR, ANGPT2, and PGF) related to angiogen-
esis had 76.47% (13/17) of SVs were defined as “loss” and 
23.53% (4/17) of SVs were defined as “gain”. Among the 
verified genes, 11 and 3 genes had SVs in SAP–ICM and 
ICM–CHF, respectively, and SAP–ICM involved 53.85% 
(14/26) “gain” SVs, while ICM–CHF is fully involved 
“loss” (Fig. 6e).

Fig. 4  The biological process enrichment analyses of disease-related genes and PDPMs. a Top 20 biological process enrichment analyses of 
SAP-related genes. b Top 20 biological process enrichment analyses of ICM-related genes. c Top 20 biological process enrichment analyses of 
CHF-related genes. d Overlapping biological processes of three disease-related genes. e Number of biological processes of PDPMs in the three 
stages. f Overlapping biological progress in PDPMs
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Discussion
In this paper, we applied the restructured modules 
method to explore the dynamic evolution of disease 
progression and found 16 potential PDPMs among SAP, 
ICM, and CHF. The process of three diseases was closely 
related to ischemia and hypoxia, involving angiogenesis, 
inflammation, electrolytes and blood pressure factors at 
the levels of genes, biological processes and pathways. In 
genomic structural variation, we also found that overlap-
ping genes of PDPMs involve more number of protein 
loss than protein replication.

Community structure is a special perspective for 
understanding the structures and functions of complex 

networks and can also significantly affect the dynamical 
behaviors on networks (Hu et al. 2020). It is well known 
that Modularity is one of the most commonly used meth-
ods to detect the community structures (Newman and 
Girvan 2004). Community or module can be helpful for 
identifying the disease genes and understanding the dis-
ease progression (Goh and Choi 2012). Thus, the pro-
gress of the three diseases was explored by reconstructing 
modules, establishing the relationship among the mod-
ules (finally forming PDPMs), and quantifying module 
changes with K-values, in which SAP–ICM is closest 
and ICM–CHF is close behind. Clinically, both SAP and 
ICM belong to ischemic heart disease, and myocardial 

Fig. 5  The KEGG pathways enrichment analyses of disease-related genes and PDPMs. a Top 20 KEGG pathways enrichment analysis of SAP-related 
genes. b Top 20 KEGG pathways enrichment analysis of ICM-related genes. c Top 20 KEGG pathways enrichment analysis of CHF-related genes. d 
Overlapping KEGG pathways of three disease-related genes. e Number of KEGG pathways of modules in three stages. f Overlapping KEGG pathways 
in PDPMs
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ischemia makes the heart experience the pathological 
process from anginal pain to hibernating myocardium to 
cell death (Moroni et  al. 2021). Myocardial hibernation 
is one of the main pathogenesis of ischemic cardiomyo-
pathy (Frangogiannis 2003). Ischemic heart disease pro-
motes complex inflammatory and remodeling pathways 
which contribute to the development of chronic heart 
failure (Dundas et  al. 2021). Therefore, the relationship 
between the three diseases found by K-value is consistent 
with the association of pathological processes.

Module ICM1 and ICM8 are common modules were 
detected in SAP- ICM–CHF according PDPMs, and 
involve 11 genes affecting the whole process. Functions 
of overlapping targets can be classified into angiogenesis, 
inflammation, electrolytes and blood pressure. Multi-
ple scientific reports point out that inflammation and 
angiogenesis are two interdependent processes underly-
ing pathogenesis of cardiovascular disorders (Zernecke 
and Weber 2005; Skoda et  al. 2018). Inflammatory cells 
secrete cytokines that activate ECs and stimulate their 
proliferation and migration, which constitute two char-
acteristic steps of angiogenesis (Herrmann et  al. 2006). 
PGF, as a member of the VEGFs family that binds two 
VEGF receptors (KDR and FLT1) (Carmeliet 2005), acti-
vates FLT1 in ECs inducing the expression of specific 

target genes (Kim et  al. 2012). Moreover, studies found 
that increased expression of PGF was associated with the 
production of inflammatory markers such as CRP (Pilarc-
zyk et  al. 2008). In the course of disease progression, 
myocardial hypertrophy, fibrosis, and remodeling are 
involved, and a key mediator of this process is the activa-
tion of neurohormones, including regulators such as the 
renin–angiotensin–aldosterone system (Kitsios and Zint-
zaras 2007). AGT is well known to be the unique Ang I 
precursor. The inactive decapeptide Ang I is located at 
the N-terminus of AGT and, after its release by REN, is 
converted into the active octapeptide ANGPT2 by ACE. 
Inflammation regulates the renin-angiotensin system and 
blood pressure, but AGT inhibits angiogenesis (Corvol 
et al. 2003; Satou et al. 2018). Therefore, there are syner-
gies and interactions between the overlapping targets of 
the three diseases and the functions of the targets.

According to the KEGG pathway analysis, we found 
that 4 gene expression (FLT1, KDR, ANGPT2, PGF) of 
HIF-1α-induced angiogenesis under hypoxia in HIF-1 
signaling pathway affected the whole stage of SAP–
ICM–CHF. The body can maintain the homeostasis 
of oxygen by activating HIF-1 signaling pathway in the 
hypoxic state and heart also needs a sufficient supply 
of oxygen to maintain effective contraction (Wei et al. 

Fig. 6  Literature verification and structural variations of overlapping genes in PDPMs. a Literature validation of overlapping genes in PDPMs. 
b Literature validation of overlapping genes of SAP–ICM and ICM–CHF in PDPMs. c HIF-1 signaling pathway and targets involved. d PI3K–AKT 
signaling pathway and targets involved. e Number of structural variations of verified overlapping genes in PDPMs
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2012). Study confirms that low oxygenation concentra-
tions in tissues (hypoxia) often trigger angiogenesis 
(Ramjiawan et  al. 2017), which can be initiated inde-
pendently of VEGF-related pathways, as well as lead 
to expression of multiple growth factors such as VEGF 
and ANGPT, via the HIF pathway (Cao et  al. 2021). 
Numerous reports documenting HIF-1α up-regulation 
in response to mediators that are abundant in inflam-
matory conditions (Jung et  al. 2003). In hearts mani-
festing pathological hypertrophy, the capillary density 
decreased during the transition from cardiac hypertro-
phy to heart failure (Flanagan et al. 1991). When cap-
illary patterns were studied in histological sections, a 
significant decrease in capillary density was observed 
in the hearts of patients with ischemic cardiomyopathy 
(Karch et  al. 2005). Moreover, the lack of HIF-1 will 
lead to angiogenesis disorder and myocardial fibrosis, 
resulting in heart failure (Tao et  al. 2020). Thus, the 
imbalance of capillary angiogenesis is related to the 
transition process of ischemic cardiomyopathy and 
heart failure, and stimulating angiogenesis may be 
helpful to prevent or reverse heart failure (Oka et  al. 
2014).

Genomic variability, as it happens, is also the fuel of 
evolvability. Structural variation is one chapter in an 
evolving story and such variants dynamic, fluid and 
unstable (Gualtieri 2021). Identifying structural vari-
ation is essential for genome interpretation (Ho et  al. 
2020). Therefore, we need to mine structural variation 
information accurately. We found more protein dele-
tions in the genes involved in SAP–ICM–CHF and 
ICM–CHF, particularly in the four genes involved in 
angiogenesis, while SAP–ICM involved more protein 
replication. Matsuoka et al. (2015) found that FLT1 may 
be susceptibility loci for miocardial infarction in Japa-
nese individuals. Deletion polymorphism in the gene 
for ACE is a potent risk factor for myocardial infarc-
tion (Cambien et al. 1992). Those large (> 50 bp) regions 
of structural variation might impact the binding of the 
various proteins (Nanni et al. 2020). For example, they 
might remove or revert the nucleotide sequence, pre-
venting the appropriate protein from recognising its 
motif and finally binding to the chain (Chiliński et  al. 
2022); therefore, we speculate that they may influence 
the gene binding of modules in the disease network, 
affecting disease progression.

Notably, our study has some limitations. First, the 
limitation of this study is the lack of independent vali-
dation. In addition, although we have selected two 
comprehensive and authoritative gene databases, we 
cannot guarantee the comprehensiveness of gene cov-
erage. These issues needs to be addressed in our further 
studies.

Conclusions
The PDPMs analysis approach combined with genomic 
structural variation provides a new avenue for deter-
mining target associations contributing to disease 
progression and reveals that inflammation and angio-
genesis may be important links among SAP, ICM and 
CHF progression.
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