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Abstract 

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that impairs normal brain development and 
socio-cognitive abilities. The pathogenesis of this condition points out the involvement of genetic and environmen-
tal factors during in-utero life. Placenta, as an interface tissue between mother and fetus, provides developing fetus 
requirements and exposes it to maternal environment as well. Therefore, the alteration of DNA methylation as epige-
netic consequence of gene-environmental interaction in the placenta could shed light on ASD pathogenesis. In this 
study, we reviewed the current findings on placental methylation status and its association with ASD. Differentially 
methylated regions (DMRs) in ASD-developing placenta were found to be mainly enriched in ASD gene loci affecting 
synaptogenesis, microtubule dynamics, neurogenesis and neuritogenesis. In addition, non-genic DMRs in ASD-pla-
centa proposes an alternative contributing mechanism for ASD development. Our study highlights the importance of 
placental DNA methylation signature as a biomarker for ASD prediction.
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Background
Autism spectrum disorder (ASD) is a neurodevelopmen-
tal disorder characterized by persistent disturbances in 
social interaction and communication, restricted inter-
ests and repetitive behaviours (American Psychiatric 
Association 2013). This classic pattern of symptoms is 
also accompanied by distinctive impairments of cogni-
tive and sensorimotor functions, including problems in 
perception (Happé and Frith 2006) and motor control 

(Cattaneo et al. 2007; Emanuele et al. 2021; Gowen and 
Hamilton 2013), as well as specific neurophysiologi-
cal signatures (Oberman et al. 2016). ASD affects one in 
54 children globally (Knopf 2020) and its pathogenesis 
is probably initiated during the in utero period, as sup-
ported by teratogen exposure timing (Strömland et  al. 
1994; Williams et  al. 2001), anatomy of neurons (Bai-
ley et  al. 1998; Bauman and Kemper 2005; Rodier et  al. 
1996), and observed attitude differences during early 
childhood (Zwaigenbaum et al. 2005). Aetiology of ASD 
is a combination of genetic and environmental factors 
(Sandin et  al. 2017; Tick et  al. 2016). Several genome-
wide studies have identified the inherited and de novo 
ASD risk factors (Autism Spectrum Disorders Working 
Group of The Psychiatric Genomics Consortium 2017). 
Environmental risk factors of ASD highlighted different 
in utero maternal exposures (Raz et  al. 2015; Schmidt 
et  al. 2012, 2011; Zerbo et  al. 2013) including precon-
ceptional and prenatal vitamin intake, such as B vitamin 
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family which could reduce ASD risk by 40% if taken dur-
ing the first month of pregnancy (Schmidt et  al. 2012, 
2011; Surén et  al. 2013). Placenta, the temporary organ 
during pregnancy that develops shortly after implanta-
tion in the uterus and attaches to the wall of the uterus 
from which fetus’s umbilical cord arises (Turco and Mof-
fett 2019), facilitates the exchange of nutrient, gas and 
waste between physically separate maternal and fetal cir-
culations, passes immunity from mother to the fetus, and 
as an endocrine organ produces hormones (Gude et  al. 
2004), as well as neurotransmitters (Rosenfeld 2021). The 
placenta-derived hormones and neurotransmitters influ-
ence oxygen and nutrients transportation to the fetus, as 
well as brain development. The neurotransmitters such 
as serotonin, dopamine, norepinephrine/epinephrine and 
hormone like allopregnanolone produced by placenta 
affect several key aspects in brain development such as 
neurogenesis and neuronal migration (Handwerger and 
Freemark 2000; Rosenfeld 2021; Vacher et al. 2021). This 
influential correlation between the placenta and the brain 
is known as placenta-brain axis (Aziz et al. 2020; Santos 
Jr et al. 2020; Un Nisa et al. 2019) and led to the develop-
ment of neuroplacentology field (Kratimenos and Penn 
2019). Since genomic imprinting and the reprogramming 
of epigenetic modifications in the growing zygote are 
governed by the placentation process (Broad et al. 2016), 
neurodevelopmental disorders like ASD could be traced 
to placental disturbances (Rosenfeld 2021). This evidence 
is supported by several epidemiological and animal stud-
ies that have identified epigenetic modifications in the 
placenta correlated with neurodevelopmental patholo-
gies (Meakin et al. 2018; Paquette et al. 2016; Rosenfeld 
2020) (Fig. 1). Thus, we aimed to review the current find-
ings on DNA methylation changes in the placenta and 
their association with ASD development.

DNA methylation in ASD‑placenta
DNA methylation status, as one of the principal epi-
genetic aspects, could reflect gene-environment inter-
action and play causal (Xu et  al. 1999), consequential 
(Rodríguez-Ubreva et  al. 2019) or intermediary (Liu 
et  al. 2013) roles during pathogenesis. DNA methyla-
tion occurs by transferring a methyl group to the fifth 
carbon position of cytosine at cytosine–phosphate–gua-
nine dinucleotides (CpG) by DNA methyltransferases 
(DNMTs) (Lin and Wang 2014). While CpGs are rare 
across the genome and mainly methylated (Jones 2012), 
they are clustered in the promoter region of genes, called 
CpG islands, and usually hypomethylated in transcrip-
tionally active genes (van der Maarel 2008).

The human placenta has a distinct methylation profile 
found in all the three trimesters of pregnancy. It is char-
acterized by large partially methylated domains (PMDs) 

(Schroeder et  al. 2016) resembling oocytes and preim-
plantation embryos methylation, where methylation 
over gene bodies is positively associated with expres-
sion, (Zhu et  al. 2022) and highly methylated domains 
(HMDs) (Schroeder et  al. 2016, 2013) which is similar 
to the methylation pattern of fetal or adult tissues (Ali 
et  al. 2014; Dekker and Sibai 2001; Mridha et  al. 2017; 
Zhu et al. 2022). PMDs are mainly over 100 kb in length 
and make up 40% of the placental genome (Schmidt et al. 
2016; Schroeder et  al. 2013, 2011). Neuronal develop-
ment and synaptic transmission genes, which are can-
didate loci for ASD, are enriched in the placental PMDs 
(Schroeder et al. 2016, 2011).

Several genome-wide methylation studies identified 
thousands of significant differentially methylated CpGs 
belonging either to intergenic or intragenic regions 
(Bahado-Singh et  al. 2021a; Bahado-Singh et  al. 2021b; 
Bakulski et al. 2021; Santos Jr et al. 2020; Zhu et al. 2019). 
The intragenic CpGs have been reported involving some 
hundreds (Bakulski et al. 2021; Zhu et al. 2019) to more 
than four thousand genes (Bahado-Singh et  al. 2021b) 
depending on the study design. These intragenic CpGs 
could be at Transcription Start Site (TSS) 200, TSS1500, 
5′ UTR, 1st exon, gene body and 3′ UTR (Bahado-Singh 
et al. 2021a, 2021b; Schmidt et al. 2016; Schroeder et al. 
2016; Zhu et  al. 2022, 2019). The Simons Foundation 
Autism Research Initiative (SFARI) has identified and 
grouped the genes implicated in ASD susceptibility which 
are known as SFARI genes (Banerjee-Basu and Packer 
2010). Differentially methylated regions (DMRs) in the 
ASD-placenta are dispersed throughout the genome and 
were reported in, but not limited to, SFARI genes (Bakul-
ski et  al. 2021). These DMRs, as identified by Ingenuity 
Pathways Analysis (IPA), affect different biological path-
ways mainly converging on synaptogenesis, microtubule 
dynamics, neurogenesis and neuritogenesis which finally 
influence neuron morphology, brain development and 
cognitive abilities (Bahado-Singh et  al. 2021a, 2021b). 
The most emphasized differentially methylated genes 
reported in different studies with predictive value or as 
main player in a specific pathway were presented in Fig. 2 
and Table 1.

Influential differentially methylated genes in ASD‑placenta 
affecting brain development
NOS1AP is one of the hypermethylated genes in the pla-
centa of ASD (Bahado-Singh et  al. 2021b). The product 
of this gene (NOS1AP) is a cytosolic protein that binds 
to the signalling molecule, neuronal nitric oxide syn-
thase (nNOS). NOS1AP, as an adapter protein, links 
nNOS to specific targets, such as synapsins, whose func-
tion is necessary at a presynaptic level (Majmundar et al. 
2021). CAMK2D is another hypermethylated gene in 
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the placenta of ASD (Bahado-Singh et  al. 2021b). Since 
the product of this gene belongs to the serine/threonine 
protein kinase family and  Ca2+/calmodulin-dependent 
protein kinase subfamily, its dysregulation could affect 
intracellular calcium signalling which is crucial for sev-
eral aspects of plasticity at glutamatergic synapses (Abra-
ham et al. 2019; Martinez-Pena y Valenzuela et al. 2010). 
AUTS2 gene was found to be hypermethylated in ASD-
placenta (Bahado-Singh et al. 2021b). During embryonic 
brain development, it contributes to dendrite and axon 
elongation and neuronal migration. It enhances rear-
rangement of the actin cytoskeleton, lamellipodia shap-
ing and neurite elongation (Gao et al. 2014). CUX1 gene 
encodes transcription factor Homeobox Protein Cux-1 

and is hypermethylated in the placenta (Bahado-Singh 
et al. 2021b). It is known that CUX1 regulates neuronal 
differentiation in the brain, development and branching 
of dendrite, and formation of dendritic spines in cortical 
layers II-III. It also plays a controlling role during synap-
togenesis (Cubelos et  al. 2010). NEUROG2 gene that is 
usually expressed in neural progenitor cells within the 
developing central and peripheral nervous systems (Ara-
vantinou-Fatorou et al. 2022) was found to be hypometh-
ylated in ASD (Bahado-Singh et  al. 2021b). This gene 
encodes a neural-specific basic helix-loop-helix (bHLH) 
transcription factor which could determine a neuronal 
fate on ectodermal cells within developing brain and 
functions in the differentiation and survival of midbrain 

Fig. 1 Placenta-brain axis. By affecting the in utero environment, maternal exposures could influence placental methylation and in turn alter gene 
expression, resulting in brain development impairments, possibly contributing to the ASD development. (The figure was designed using Vecteezy 
images; www. vecte ezy. com)

http://www.vecteezy.com
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dopaminergic neurons (Aravantinou-Fatorou et al. 2022; 
Park et  al. 2008). NEUROG2 induces excitatory neu-
rons in human cortices, and its knockout results in lack 
of excitatory neurons demonstrating its key function in 
ASD (Deneault et al. 2018; Nehme et al. 2018). NRN1 is 
another hypermetylated gene in ASD-placenta (Bahado-
Singh et  al. 2021a) which is expressed in postmitotic-
differentiating neurons of the developing nervous system 
and neuronal structures. NRN1 by encoding a member 
of the neuritin family contributes to neurite outgrowth 
and arborization, demonstrating its function in promot-
ing neuritogenesis. Overexpression of NRN1 could be 
correlated with astrocytoma progression (Nedivi et  al. 
1993; Zhang et al. 2011). POU3F2, another hypomethyl-
ated gene, encodes a transcription factor that is involved 
in the process of neuronal differentiation and promotes 
the activation of corticotropin-releasing hormone regu-
lated genes (Lin et al. 2018). This gene has high expres-
sion in the developing brain and is considered as a master 
regulator of downstream ASD candidate genes (Bahado-
Singh et  al. 2021b; Lin et  al. 2018). GRIPAP1 gene that 
encodes a guanine nucleotide exchange factor for the 
Ras family of small G proteins (RasGEF) was found to 
be hypermethylated in ASD (Bahado-Singh et al. 2021b). 
The encoded protein, by regulating the endosomal recy-
cling back to the neuronal plasma membrane within den-
dritic spines, functions in the maintenance of dendritic 
spine morphology. Its activity is necessary for recycling 
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 
(AMPA) receptor to dendrite membranes and synaptic 
plasticity (Hoogenraad et  al. 2010). Members of WNT 
family gene including WNT1, WNT2, WNT2B, WNT7B 
and WNT10A had altered methylation levels in ASD pla-
centa (Bahado-Singh et  al. 2021b). The WNT signalling 

pathway governs multiple processes, including embry-
onic development and tissue homeostasis (Bae and Hong 
2018). WNT1, WNT2 and WNT10A genes are hypometh-
ylated while WNT2B and WNT7B are hypermethylated 
in ASD-placenta (Bahado-Singh et  al. 2021b). WNT1, a 
very conserved gene in evolution encoding a protein 98% 
identical to the mouse Wnt1 protein, is known to play a 
key role in the developing embryonic brain and central 
nervous system (CNS), specifically for the induction 
of the mesencephalon and cerebellum (Guo et  al. 2007; 
Lekven et al. 2019; Pieters et al. 2020). WNT2 is probably 
involved in embryonic brain development by regulating 
the proliferation of dopaminergic precursors and neurons 
(Sousa et al. 2010). WNT7B plays a role in central nerv-
ous system (CNS) angiogenesis and blood–brain barrier 
regulation (Eubelen et al. 2018; Eubelen et al. 2018) DLL1 
gene that encodes the Delta-like1 ligand of Notch recep-
tors was found to be hypermethylated in the placenta of 
ASD (Schroeder et  al. 2016). DLL1 regulates neurogen-
esis, neurons differentiation, quiescence of neural stem 
cells and plays a role as a fate determinant during neural 
stem cells mitosis. It influences brain development at dif-
ferent levels including neocortex development, cerebel-
lar development by regulating Bergmann glial monolayer 
formation and its morphological maturation, spinal cord 
development by regulating neurogenesis through pre-
venting the premature differentiation of neural progeni-
tors and maintaining progenitors in spinal cord (Barton 
and Fendrik 2013; Hiraoka et al. 2013; Nelson et al. 2013; 
Ramos et  al. 2010; Solecki et  al. 2001). Protocadherin 
(Pcdh) is a gene family functioning in the formation of 
neural networking and synaptogenesis (Peek et al. 2017). 
Several loci of PCDH gene family were found to be hypo-
methylated in ASD placenta likely affecting the quantity 
of synapse (Bahado-Singh et al. 2021b).

Fig. 2 Chromosomal locations of most important differentially methylated genes in ASD-Placenta. The colors in the ideograms show: black and 
grey: Giemsa positive, red: centromere, light blue: variable region, and dark blue: stalk



Page 5 of 12Ravaei et al. Molecular Medicine            (2023) 29:8  

Ta
bl

e 
1 

Th
e 

m
os

t i
m

po
rt

an
t d

iff
er

en
tia

lly
 m

et
hy

la
te

d 
ge

ne
s 

in
 A

SD
-P

la
ce

nt
a 

w
ith

 p
re

di
ct

iv
e 

or
 p

at
hw

ay
s 

re
le

va
nc

e 
va

lu
e

G
en

e
Ch

ro
m

os
om

e
M

et
hy

la
tio

n
Pr

od
uc

t
G

en
e 

fu
nc

tio
n

SF
A

RI
Si

gn
ifi

ca
nc

e
Re

le
va

nc
e

Re
fe

re
nc

es

N
O
S1
AP

1q
23

.3
In

cr
ea

se
d

N
eu

ro
na

l n
itr

ic
 o

xi
de

 s
yn

-
th

as
e 

1 
ad

ap
to

r p
ro

te
in

Fu
nc

tio
ns

 a
s 

an
 a

da
pt

er
 

pr
ot

ei
n 

co
nn

ec
tin

g 
nN

O
S 

to
 s

pe
ci

fic
 ta

rg
et

s 
lik

e 
sy

na
ps

in
s

N
G

W
S

Pr
ed

ic
tiv

e
Ba

ha
do

-S
in

gh
 e

t a
l. 

(2
02

1b
)

W
N
T2
B

1p
13

.2
In

cr
ea

se
d

W
nt

 F
am

ily
 M

em
be

r 2
B

Pl
ay

 a
 ro

le
 in

 th
e 

ca
no

ni
-

ca
l W

nt
/b

et
a-

ca
te

ni
n 

si
gn

al
in

g 
pa

th
w

ay

N
G

W
S

M
ic

ro
tu

bu
le

 d
yn

am
ic

s 
pa

th
w

ay
Ba

ha
do

-S
in

gh
 e

t a
l. 

(2
02

1b
)

W
N
T1
0A

2q
35

D
ec

re
as

ed
W

nt
 F

am
ily

 M
em

be
r 1

0A
Fu

nc
tio

ns
 in

 th
e 

ca
no

ni
-

ca
l W

nt
/b

et
a-

ca
te

ni
n 

si
gn

al
in

g 
pa

th
w

ay

N
G

W
S

M
ic

ro
tu

bu
le

 d
yn

am
ic

s 
pa

th
w

ay
Ba

ha
do

-S
in

gh
 e

t a
l. 

(2
02

1b
)

CA
M
K2
D

4q
26

In
cr

ea
se

d
Ca

lc
iu

m
/C

al
m

od
ul

in
-

D
ep

en
de

nt
 P

ro
te

in
 K

in
as

e 
Ty

pe
 II

 D
el

ta
 C

ha
in

In
tr

ac
el

lu
la

r c
al

ci
um

 
si

gn
al

in
g

N
G

W
S

Q
ua

nt
ity

 o
f s

yn
ap

se
 

pa
th

w
ay

Ba
ha

do
-S

in
gh

 e
t a

l. 
(2

02
1b

)

N
EU

RO
G
2

4q
25

D
ec

re
as

ed
N

eu
ra

l-s
pe

ci
fic

 b
as

ic
 

he
lix

-lo
op

-h
el

ix
 (b

H
LH

) 
tr

an
sc

rip
tio

n 
fa

ct
or

Sp
ec

ify
 p

ro
ge

ni
to

rs
 to

 a
 

ne
ur

on
al

 fa
te

 o
n 

ec
to

de
r-

m
al

 c
el

ls
 a

nd
 re

pr
og

ra
m

s 
ea

rly
 p

os
tn

at
al

 a
st

ro
gl

ia
 

to
 d

ev
el

op
 n

eu
ro

ns

N
N

S
A

bn
or

m
al

 m
or

ph
ol

og
y 

of
 

ne
ur

on
s 

pa
th

w
ay

Ba
ha

do
-S

in
gh

 e
t a

l. 
(2

02
1b

)

N
KX
2-
5

5q
35

.1
In

cr
ea

se
d

H
om

eo
bo

x 
Pr

ot
ei

n 
N

kx
-

2.
5 

tr
an

sc
rip

tio
n 

fa
ct

or
Fu

nc
tio

ns
 in

 h
ea

rt
 a

nd
 

th
e 

sp
le

en
 d

ev
el

op
m

en
t

N
G

W
S

Pr
ed

ic
tiv

e
Ba

ha
do

-S
in

gh
 e

t a
l. 

(2
02

1a
)

D
LL
1

6q
27

In
cr

ea
se

d/
de

cr
ea

se
d

En
co

de
s 

th
e 

D
el

ta
-li

ke
1 

lig
an

d 
of

 N
ot

ch
 re

ce
pt

or
s

Re
gu

la
te

s 
ne

ur
og

en
es

is
, 

ne
ur

on
s 

di
ffe

re
nt

ia
tio

n,
 

qu
ie

sc
en

ce
 o

f n
eu

ra
l 

st
em

 c
el

ls
 a

nd
 p

la
ys

 a
 

ro
le

 a
s 

a 
fa

te
 d

et
er

m
in

an
t 

du
rin

g 
ne

ur
al

 s
te

m
 c

el
ls

 
m

ito
si

s

Y
G

W
S

Pr
ed

ic
tiv

e
Ba

ha
do

-S
in

gh
 e

t a
l. 

(2
02

1b
), 

Sc
hr

oe
de

r e
t a

l. 
(2

01
6)

PO
U
3F
2

6q
16

.1
D

ec
re

as
ed

PO
U

 D
om

ai
n,

 C
la

ss
 3

, 
Tr

an
sc

rip
tio

n 
Fa

ct
or

 2
N

eu
ro

na
l d

iff
er

en
tia

-
tio

n 
an

d 
pr

om
ot

in
g 

th
e 

ac
tiv

at
io

n 
of

 c
or

tic
ot

ro
-

pi
n-

re
le

as
in

g 
ho

rm
on

e 
re

gu
la

te
d 

ge
ne

s

N
N

S
A

bn
or

m
al

 m
or

ph
ol

og
y 

of
 

ne
ur

on
s 

pa
th

w
ay

Ba
ha

do
-S

in
gh

 e
t a

l. 
(2

02
1b

)

N
RN

1
6p

25
.1

In
cr

ea
se

d
N

eu
rit

in
Pr

om
ot

es
 n

eu
rit

e 
ou

t-
gr

ow
th

 a
nd

 a
rb

or
is

at
io

n 
du

rin
g 

ne
ur

ito
ge

ne
si

s

N
G

W
S

Pr
ed

ic
tiv

e
Ba

ha
do

-S
in

gh
 e

t a
l. 

(2
02

1a
)

AU
TS
2

7q
11

.2
2

D
ec

re
as

ed
A

ut
is

m
 S

us
ce

pt
ib

ili
ty

 
G

en
e 

2 
Pr

ot
ei

n
Co

nt
rib

ut
es

 to
 d

en
dr

ite
 

an
d 

ax
on

 e
lo

ng
at

io
n 

an
d 

ne
ur

on
al

 m
ig

ra
tio

n.
 It

 
en

ha
nc

es
 re

ar
ra

ng
em

en
t 

of
 th

e 
ac

tin
 c

yt
os

ke
le

to
n,

 
la

m
el

lip
od

ia
 s

ha
pi

ng
 a

nd
 

ne
ur

ite
 e

lo
ng

at
io

n

Y
G

W
S

N
eu

rit
og

en
es

is
 p

at
hw

ay
Ba

ha
do

-S
in

gh
 e

t a
l. 

(2
02

1a
), 

Ba
ha

do
-S

in
gh

 e
t a

l. 
(2

02
1b

)



Page 6 of 12Ravaei et al. Molecular Medicine            (2023) 29:8 

Ta
bl

e 
1 

(c
on

tin
ue

d)

G
en

e
Ch

ro
m

os
om

e
M

et
hy

la
tio

n
Pr

od
uc

t
G

en
e 

fu
nc

tio
n

SF
A

RI
Si

gn
ifi

ca
nc

e
Re

le
va

nc
e

Re
fe

re
nc

es

CU
X1

7q
22

.1
In

cr
ea

se
d

H
om

eo
bo

x 
Pr

ot
ei

n 
Cu

x-
1

En
co

de
s 

a 
tr

an
sc

rip
-

tio
n 

fa
ct

or
 th

at
 c

on
tr

ol
s 

ne
ur

on
al

 d
iff

er
en

tia
tio

n 
in

 
th

e 
br

ai
n,

 re
gu

la
te

s 
de

n-
dr

ite
 d

ev
el

op
m

en
t a

nd
 

br
an

ch
in

g,
 a

nd
 d

en
dr

iti
c 

sp
in

e 
fo

rm
at

io
n 

in
 c

or
tic

al
 

la
ye

rs
 II

-II
I. 

It 
al

so
 p

la
y 

a 
co

nt
ro

lli
ng

 ro
le

 d
ur

in
g 

sy
na

pt
og

en
es

is

Y
G

W
S

N
eu

rit
og

en
es

is
 p

at
hw

ay
Ba

ha
do

-S
in

gh
 e

t a
l. 

(2
02

1b
)

W
N
T2

7q
31

.2
D

ec
re

as
ed

W
nt

 F
am

ily
 M

em
be

r 2
Fu

nc
tio

ns
 in

 th
e 

ca
no

ni
ca

l 
W

nt
/b

et
a-

ca
te

ni
n 

si
gn

al
-

in
g 

pa
th

w
ay

 a
nd

 li
ke

ly
 

in
vo

lv
ed

 in
 e

m
br

yo
ni

c 
br

ai
n 

de
ve

lo
pm

en
t b

y 
co

nt
ro

lli
ng

 th
e 

pr
ol

if-
er

at
io

n 
of

 d
op

am
in

er
gi

c 
pr

ec
ur

so
rs

 a
nd

 n
eu

ro
ns

N
G

W
S

M
ic

ro
tu

bu
le

 d
yn

am
ic

s 
pa

th
w

ay
Ba

ha
do

-S
in

gh
 e

t a
l. 

(2
02

1b
)

G
PN

M
B

7p
15

.3
In

cr
ea

se
d

G
ly

co
pr

ot
ei

n 
N

on
m

et
a-

st
at

ic
 M

el
an

om
a 

Pr
ot

ei
n 

B
M

ay
 b

e 
in

vo
lv

ed
 in

 
gr

ow
th

 d
el

ay
 a

nd
 

re
du

ct
io

n 
of

 m
et

as
ta

tic
 

po
te

nt
ia

l a
nd

 c
ou

ld
 b

e 
a 

m
el

an
og

en
ic

 e
nz

ym
e

N
G

W
S

Pr
ed

ic
tiv

e
Ba

ha
do

-S
in

gh
 e

t a
l. 

(2
02

1a
)

M
YC

8q
24

.2
1

D
ec

re
as

ed
N

uc
le

ar
 p

ho
sp

ho
pr

ot
ei

n 
(B

H
LH

 T
ra

ns
cr

ip
tio

n 
Fa

ct
or

)

Pl
ay

s 
a 

ro
le

 in
 c

el
l c

yc
le

 
pr

og
re

ss
io

n,
 a

po
pt

os
is

 
an

d 
ce

llu
la

r t
ra

ns
fo

rm
a-

tio
n

N
G

W
S

M
ic

ro
tu

bu
le

 d
yn

am
ic

s 
pa

th
w

ay
Ba

ha
do

-S
in

gh
 e

t a
l. 

(2
02

1b
)

CY
P2
E1

10
q2

6.
3

D
ec

re
as

ed
A

 m
em

be
r o

f c
yt

oc
hr

om
e 

P4
50

 s
up

er
fa

m
ily

Co
nt

rib
ut

es
 to

 c
at

al
ys

in
g 

re
ac

tio
ns

 in
vo

lv
ed

 in
 d

ru
g 

m
et

ab
ol

is
m

 a
nd

 s
yn

th
es

is
 

of
 c

ho
le

st
er

ol
, s

te
ro

id
s 

an
d 

ot
he

r l
ip

id
s 

In
vo

lv
ed

 
in

 th
e 

m
et

ab
ol

is
m

 o
f 

dr
ug

s

N
G

W
S

A
bn

or
m

al
 m

or
ph

ol
og

y 
of

 
ne

ur
on

s 
pa

th
w

ay
Ba

ha
do

-S
in

gh
 e

t a
l. 

(2
02

1a
), 

Ba
ha

do
-S

in
gh

 e
t a

l. 
(2

02
1b

), 
Zh

u 
et

 a
l. 

(2
01

9)

AF
AP

1L
2

10
q2

5.
3

In
cr

ea
se

d
A

ct
in

 F
ila

m
en

t-
A

ss
oc

ia
te

d 
Pr

ot
ei

n 
1-

Li
ke

 2
Pl

ay
s 

se
ve

ra
l r

ol
es

 in
cl

ud
-

in
g 

po
si

tiv
e 

re
gu

la
tio

n 
of

 
ep

id
er

m
al

 g
ro

w
th

 fa
ct

or
 

re
ce

pt
or

 s
ig

na
lin

g 
pa

th
-

w
ay

, r
eg

ul
at

io
n 

of
 g

en
e 

ex
pr

es
si

on
; a

nd
 c

on
tr

ol
-

lin
g 

m
ito

tic
 c

el
l c

yc
le

N
G

W
S

Pr
ed

ic
tiv

e
Ba

ha
do

-S
in

gh
 e

t a
l. 

(2
02

1b
)



Page 7 of 12Ravaei et al. Molecular Medicine            (2023) 29:8  

Ta
bl

e 
1 

(c
on

tin
ue

d)

G
en

e
Ch

ro
m

os
om

e
M

et
hy

la
tio

n
Pr

od
uc

t
G

en
e 

fu
nc

tio
n

SF
A

RI
Si

gn
ifi

ca
nc

e
Re

le
va

nc
e

Re
fe

re
nc

es

D
G
KZ

11
p1

1.
2

D
ec

re
as

ed
D

ia
cy

lg
ly

ce
ro

l K
in

as
e 

Ze
ta

Re
du

ce
s 

pr
ot

ei
n 

ki
na

se
 

C
 a

ct
iv

ity
 b

y 
co

nt
ro

lli
ng

 
di

ac
yl

gl
yc

er
ol

 le
ve

ls
 in

 
in

tr
ac

el
lu

la
r s

ig
na

lin
g 

ca
sc

ad
e 

an
d 

si
gn

al
 tr

an
s-

du
ct

io
n

N
N

S 
on

ly
 in

 m
at

er
na

l s
id

e
Pr

ed
ic

tiv
e

Ba
ha

do
-S

in
gh

 e
t a

l. 
(2

02
1b

), 
Ba

ku
ls

ki
 e

t a
l. 

(2
02

1)

CH
ST
11

12
q2

3.
3

N
A

Ca
rb

oh
yd

ra
te

 S
ul

fo
tr

an
s-

fe
ra

se
 1

1
Ca

ta
ly

ze
s 

th
e 

tr
an

sf
er

 o
f 

su
lfa

te
 to

 N
-a

ce
ty

lg
a-

la
ct

os
am

in
e 

(G
al

N
A

c)
 

re
si

du
e 

of
 c

ho
nd

ro
iti

n 
in

 c
ar

til
ag

e 
an

d 
on

 th
e 

su
rf

ac
es

 o
f c

el
ls

 a
nd

 
ex

tr
ac

el
lu

la
r m

at
ric

es

N
G

W
S 

in
 o

ne
 C

pG
 s

ite
, 

cg
09

41
83

54
Pr

ed
ic

tiv
e

Sa
nt

os
 Jr

 e
t a

l. 
(2

02
0)

W
N
T1

12
q1

3.
12

D
ec

re
as

ed
W

nt
 F

am
ily

 M
em

be
r 1

Fu
nc

tio
ns

 in
 th

e 
ca

no
ni

-
ca

l W
nt

/b
et

a-
ca

te
ni

n 
si

gn
al

in
g 

pa
th

w
ay

 a
nd

 
pl

ay
 a

 k
ey

 ro
le

 in
 th

e 
de

ve
lo

pi
ng

 e
m

br
yo

ni
c 

br
ai

n 
an

d 
ce

nt
ra

l n
er

vo
us

 
sy

st
em

 (C
N

S)

Y
G

W
S

M
ic

ro
tu

bu
le

 d
yn

am
ic

s 
pa

th
w

ay
Ba

ha
do

-S
in

gh
 e

t a
l. 

(2
02

1b
)

IR
S2

13
q3

4
In

cr
ea

se
d/

de
cr

ea
se

d
En

co
de

s 
in

su
lin

 re
ce

pt
or

 
su

bs
tr

at
e 

2
A

 c
yt

op
la

sm
ic

 s
ig

na
lli

ng
 

m
ol

ec
ul

e 
th

at
 m

ed
ia

te
s 

th
e 

in
flu

en
ce

 o
f i

ns
ul

in
 

an
d 

in
su

lin
-li

ke
 g

ro
w

th
 

fa
ct

or
 1

 (I
G

F1
) a

nd
 

cy
to

ki
ne

 re
ce

pt
or

s

N
G

W
S

Pr
ed

ic
tiv

e
Ba

ha
do

-S
in

gh
 e

t a
l. 

(2
02

1b
), 

Zh
u 

et
 a

l. 
(2

01
9)

ZN
F2
67

16
p1

1.
2

In
cr

ea
se

d
Zi

nc
 F

in
ge

r P
ro

te
in

 2
67

A
ct

iv
at

es
 D

N
A

-b
in

di
ng

 
tr

an
sc

rip
tio

n 
ac

tiv
at

or
 

fu
nc

tio
n,

 R
N

A
 p

ol
ym

er
as

e 
II-

sp
ec

ifi
c 

an
d 

RN
A

 p
ol

y-
m

er
as

e 
II 

ci
s-

re
gu

la
to

ry
 

re
gi

on
 s

eq
ue

nc
e-

sp
ec

ifi
c 

D
N

A
 b

in
di

ng
 a

ct
iv

ity

N
G

W
S

Pr
ed

ic
tiv

e
Ba

ha
do

-S
in

gh
 e

t a
l. 

(2
02

1a
)

ZN
F2
17

20
q1

3.
2

In
cr

ea
se

d
Zi

nc
 F

in
ge

r P
ro

te
in

 2
17

A
ct

iv
at

es
 D

N
A

-b
in

di
ng

 
tr

an
sc

rip
tio

n 
re

pr
es

so
r 

fu
nc

tio
n,

 R
N

A
 p

ol
ym

er
as

e 
II-

sp
ec

ifi
c 

an
d 

RN
A

 p
ol

y-
m

er
as

e 
II 

ci
s-

re
gu

la
to

ry
 

re
gi

on
 s

eq
ue

nc
e-

sp
ec

ifi
c 

D
N

A
 b

in
di

ng
 a

ct
iv

ity
 a

nd
 

re
gu

la
te

s 
ne

ur
on

-s
pe

ci
fic

 
ge

ne
s 

su
ch

 a
s 
Co

RE
ST

 a
nd

 
H
D
AC

2

N
G

W
S

Pr
ed

ic
tiv

e
Ba

ha
do

-S
in

gh
 e

t a
l. 

(2
02

1a
)



Page 8 of 12Ravaei et al. Molecular Medicine            (2023) 29:8 

Ta
bl

e 
1 

(c
on

tin
ue

d)

G
en

e
Ch

ro
m

os
om

e
M

et
hy

la
tio

n
Pr

od
uc

t
G

en
e 

fu
nc

tio
n

SF
A

RI
Si

gn
ifi

ca
nc

e
Re

le
va

nc
e

Re
fe

re
nc

es

N
H
IP

22
q1

3.
33

D
ec

re
as

ed
ln

cR
N

A
H

yp
ox

ia
 re

sp
on

si
ve

 re
gu

-
la

to
ry

 g
en

e
N

G
W

S
Pr

ed
ic

tiv
e

Zh
u 

et
 a

l. 
(2

02
2)

W
N
T7
B

22
q1

3.
31

In
cr

ea
se

d
W

nt
 F

am
ily

 M
em

be
r 7

B
Fu

nc
tio

ns
 in

 th
e 

ca
no

ni
-

ca
l W

nt
/b

et
a-

ca
te

ni
n 

si
gn

al
in

g 
pa

th
w

ay
 a

nd
 

is
 n

ec
es

sa
ry

 fo
r c

en
tr

al
 

ne
rv

ou
s 

sy
st

em
 (C

N
S)

 
an

gi
og

en
es

is
 a

nd
 b

lo
od

–
br

ai
n 

ba
rr

ie
r r

eg
ul

at
io

n

N
G

W
S

M
ic

ro
tu

bu
le

 d
yn

am
ic

s 
pa

th
w

ay
Ba

ha
do

-S
in

gh
 e

t a
l. 

(2
02

1b
)

G
RI
PA
P1

Xp
11

.2
3

In
cr

ea
se

d
G

RI
P1

 A
ss

oc
ia

te
d 

Pr
ot

ei
n 

1
In

vo
lv

ed
 in

 n
eu

ro
na

l 
cy

to
sk

el
et

on
 o

rg
an

iz
at

io
n

N
G

W
S

Pr
ed

ic
tiv

e
Ba

ha
do

-S
in

gh
 e

t a
l. 

(2
02

1b
)

M
O
SP
D
1

Xq
26

.3
In

cr
ea

se
d

M
ot

ile
 S

pe
rm

 D
om

ai
n 

Co
nt

ai
ni

ng
 1

M
es

en
ch

ym
al

 s
te

m
 c

el
ls

 
(M

SC
s)

 p
ro

lif
er

at
io

n 
an

d 
di

ffe
re

nt
ia

tio
n

N
G

W
S

Pr
ed

ic
tiv

e
Ba

ha
do

-S
in

gh
 e

t a
l. 

(2
02

1b
)

G
W

S 
ge

no
m

e-
w

id
e 

si
gn

ifi
ca

nt
, N

S 
no

m
in

al
ly

 s
ig

ni
fic

an
t, 

N
A 

no
t a

va
ila

bl
e,

 Y
 y

es
, N

 n
o



Page 9 of 12Ravaei et al. Molecular Medicine            (2023) 29:8  

Non‑genic DNA methylation pattern in ASD‑placenta
The genomic localizations of methylation sites are clas-
sified according to the distance from CpG islands known 
as: (a) shores: regions up to 2  kb from CpG island, (b) 
shelves: regions from 2 to 4 kb from CpG island and (c) 
open sea: the rest of the genome (Sandoval et al. 2011). In 
the fetal side of the placenta, the most powerful associa-
tions with global methylation were reported in the shelf 
and open sea, regions which are not necessarily con-
nected to specific genes (Bakulski et al. 2021). In addition, 
the observation of different methylation patterns in thou-
sands of intergenic CpGs in ASD placenta reported in 
other studies (Bahado-Singh et al. 2021a, 2021b) supports 
that non-genic mechanisms contribute to ASD devel-
opment (Bakulski et al. 2021). It is known that aberrant 
methylation in intergenic regions is associated with his-
tone methylation and euchromatin modification which 
could influence the reprogramming of the 3D organiza-
tion of chromatin and activation of distal enhancers (Li 
et al. 2021). This observation could be further supported 
by the presence of loss-of-function variants in ASD risk 
genes such as BAF (Lo et  al. 2022), CHD8 (De Rubeis 
et al. 2014) and SETD5 (Nakagawa et al. 2020; Sessa et al. 
2019) which function is involved in chromatin remodel-
ling and are affecting multiple cellular processes such as 
transcription and replication.

Conclusion and future direction
As the pathology of ASD is mostly limited to the devel-
opment of the brain, the most appropriate approach to 
investigate DNA methylation in this condition should 
be through samples of brain tissue. However, analys-
ing brain tissue is challenging due to small sample size, 
limited replication capacity, timing of collection after 
disease onset and aging (Bakulski et al. 2016). Although 
lacking the same target tissues of the brain, investi-
gating perinatal tissues has some privileges, including 
larger sample size and timing prior to disease manifes-
tation (Bakulski et  al. 2016). Bakulski et  al., compared 
placenta DNA methylation level with other peripheral 
tissues including early- and late-pregnancy mater-
nal blood and infant cord blood and tested them for 
enrichment in ASD genetic loci including 881 SFARI 
genes. They evidenced that among 839 enriched SFARI 
genes, placenta showed enrichment for more than 400 
genes among which 144 genes overlapped in all tis-
sue types, which implies reliability of placenta for 
ASD methylation studies (Bakulski et  al. 2021). How-
ever, several aspects should be considered in studying 
the methylation of placenta in ASD. First, methylation 
of placenta is less likely to be a pathological conse-
quence and more likely to be an intermediate phase in 

ASD process (Bakulski et al. 2021). Second, placenta is 
a heterogeneous mixture of cells such as trophoblasts 
mesenchymal stromal cells, fetal vascular and hemato-
poetic cells (Schmidt et al. 2016), which have different 
gene expression patterns and correspondingly would 
have different methylation signature. Third, placenta is 
a unique tissue featuring the juncture of two separate 
genomes, i.e., mother and fetus, that could accordingly 
have differences in their epigenetic machinery. In large 
scale level, no distinguishable methylation differences 
between maternal and fetal side (Schroeder et al. 2013) 
or cell type (Schroeder et al. 2015) have been observed 
(Schmidt et  al. 2016) but nominally significant dif-
ferences between maternal and fetus side have been 
reported (Bakulski et al. 2021). Last, similar to reported 
differences in DNA methylation in umbilical cord tis-
sue from preterm and full-term pregnancies (Wu et al. 
2019), placenta from preterm ASD (Bahado-Singh et al. 
2021a) and full-term ASD (Bahado-Singh et al. 2021b) 
may have differences in their methylation profiles.

The placenta, as an accessible tissue with distinctive 
global and site-specific DNA methylation profiles, could 
provide important information about ASD development 
as it is a more precise catalogue of obstetric, perinatal 
and labor influences than other tissues and could have 
precise diagnostic value, however, following confirmation 
of the available predictive evidence by replication studies 
with larger sample size as most of the current studies suf-
fer from limited sample size or being underpowered. In 
addition, there are heterogeneity in study design of the 
available reports which limits providing top differentially 
methylated loci as a few of them such as DDL1, AUTS2, 
CYP2E1, and IRS2 have been emphasized in more than 
one study. In perspective, aggregating additional data-
sets such as mRNA and miRNA expression with placen-
tal DNA methylation data (Santos Jr et  al. 2020), using 
an extra unbiased tool such as whole genome bisulfite 
sequencing (WGBA), which has identified the novel 
locus NHIP that had been missed by standard array-
based methods (Zhu et  al. 2022), and applying effective 
AI algorithms achieving a highly accurate prediction of 
ASD (Bahado-Singh et  al. 2021a, 2021b) could establish 
a fine-tuned diagnostic pipeline. In conclusion, the avail-
able pieces of evidence support that the methylation 
changes in the placenta might be a relevant informative 
biomarker for ASD prediction.
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