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Abstract 

Background Low-grade gliomas (LGG) are a type of brain tumor that can be lethal, and it is essential to identify 
genes that are correlated with patient prognosis. In this study, we aimed to use CRISPR-cas9 screening data to identify 
key signaling pathways and develop a genetic signature associated with high-risk, low-grade glioma patients.

Methods The study used CRISPR-cas9 screening data to identify essential genes correlated with cell survival in LGG. 
We used RNA-seq data to identify differentially expressed genes (DEGs) related to cell viability. Moreover, we used 
the least absolute shrinkage and selection operator (LASSO) method to construct a genetic signature for predicting 
overall survival in patients. We performed enrichment analysis to identify pathways mediated by DEGs, overlapping 
genes, and genes shared in the Weighted correlation network analysis (WGCNA). Finally, the study used western blot, 
qRT-PCR, and IHC to detect the expression of hub genes from signature in clinical samples.

Results The study identified 145 overexpressed oncogenes in low-grade gliomas using the TCGA database. These 
genes were intersected with lethal genes identified in the CRISPR-cas9 screening data from Depmap database, which 
are enriched in Hippo pathways. A total of 19 genes were used to construct a genetic signature, and the Hippo signal-
ing pathway was found to be the predominantly enriched pathway. The signature effectively distinguished between 
low- and high-risk patients, with high-risk patients showing a shorter overall survival duration. Differences in hub 
gene expression were found in different clinical samples, with the protein and mRNA expression of REP65 being sig-
nificantly up-regulated in tumor cells. The study suggests that the Hippo signaling pathway may be a critical regula-
tor of viability and tumor proliferation and therefore is an innovative new target for treating cancerous brain tumors, 
including low-grade gliomas.

Conclusion Our study identified a novel genetic signature associated with high-risk, LGG patients. We found that the 
Hippo signaling pathway was significantly enriched in this signature, indicating that it may be a critical regulator of 
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tumor viability and proliferation in LGG. Targeting the Hippo pathway could be an innovative new strategy for treating 
LGG.

Keywords CRISPR-cas9 screening, Low-grade glioma, Hippo signaling pathway, Prognosis, Signature, WGCNA

Introduction
Low-grade gliomas (LGG) have been demonstrated as 
being among the most prevalent primary tumors affect-
ing the central nervous system and consist of WHO 
grade II and III gliomas (Louis et al. 2007; Li et al. 2021). 
Although molecular features including isotope dehy-
drogenase 1 and 2 genes (IDH1/IDH2), PTEN, EGFR, 
ATRX, TPP53, coding status of chromosome arms 19q 
and 1p, Chr 7 gain/Chr 10 loss, Chr19/20 co-gain, have 
significantly distinguished different classes of LGG (Chi-
ang et  al. 2020). LGG has significant heterogeneity that 
hinders improved patient outcomes (Wang et  al. 2021). 
Until now, several approaches have been used to treat 
gliomas, such as lytic virus therapy, targeted therapy, 
immunotherapy, chemotherapy, radiation therapy, and 
surgery, but clinical outcomes for LGG patients have not 
significantly improved (Cai et  al. 2020). Therefore, it is 
essential to improve the efficacy of treatment for patients 
with LGG. In addition to conventional therapies, there 
is growing interest in the emerging CRISPR/Cas9 gene-
editing system.

CRISPR/Cas9 system is widely found in prokaryotic 
genomes and is an acquired immune defense mechanism 
that has evolved in bacteria and archaea in response to 
viral and plasmid invasion (Usman et  al. 2020; Loura-
dour et  al. 2019). The CRISPR/Cas9 system mainly 
consists of the Cas9 protein and single-stranded guide 
RNA (sgRNA) (Peng et  al. 2018). Cas9 protein recog-
nizes a specific DNA sequence under the guidance of 
sgRNA. The Cas9 protein can cut the different target 
sites through the principle of base complementary pair-
ing to achieve the double-strand break of DNA (Moses 
et  al. 2019; Yang et  al. 2020). In addition CRISPR/Cas9 
can also be used for gene expression regulation (tran-
scriptional activation/repression), epigenetic modifica-
tions, and genomic imaging (Amjad et al. 2020; Khanzadi 
and Khan 2020). This application relies on the resolu-
tion of the Cas9 protein structure (Gangopadhyay et  al. 
2019). Cas9, a multifunctional protein, possesses two 
nuclease structural domains, HNH and RuvC. The HNH 
domain cuts the DNA strand complementarily paired 
with crRNA, and the RuvC domain cuts the other strand 
of double-stranded DNA (Stovicek et al. 2017; Wu et al. 
2020). Cas9 becomes a single-stranded cleaved protein if 
one of the two structural domains is mutated, and if both 
are mutated, Cas9 becomes a protein with only DNA-
binding activity (Young et  al. 2019). dCas9 stands for 

“dead” or “catalytically inactive” Cas9, which is a modi-
fied form of the Cas9 protein commonly used in CRISPR 
gene editing. Unlike the active Cas9 protein, which can 
cut DNA, dCas9 cannot cleave DNA, but it retains its 
ability to specifically bind to a target DNA sequence. This 
makes it useful for gene regulation, as it can be directed 
to bind to a specific gene sequence and either block or 
activate its expression without permanently altering the 
DNA sequence. When dCas9 binds to the coding region 
or promoter region of a gene, it affects the activity of 
RNA polymerase and thus transcription, a method also 
known as CRISPRi (Mahas et  al. 2018).In humans and 
yeast, if the dCas9 protein is expressed in fusion with 
VP64 or KRAB, it brings about transcriptional activa-
tion and transcriptional repression, respectively (Kleinjan 
et al. 2017; Wen et al. 2016).

Genome-wide knockdown technologies developed 
based on the CRISPR/Cas9 system are making their 
mark in numerous areas of oncology research. These 
technologies contribute to the comprehension of the 
impact of knocking out established genes on biologi-
cal phenotypes on a genome-wide scale. Recently, it was 
shown that CRISPR-Cas9-mediated knockdown of the 
TIM3 gene in human natural killer cells enhanced the 
growth inhibition of human glioma cells (Morimoto et al. 
2021). In addition, it was discovered that the CRISPR/
Cas9 system specifically targets EGFR exon 17, result-
ing in the inhibition of the activation of NF-kB by epi-
genetically modulating UBXN1 in EGFRwt/vIII glioma 
cells. Thus, this mechanism indicates that CRISPR/Cas9 
is a viable treatment modality for GBM patients with 
EGFR mutations and EGFR amplification (Huang et  al. 
2017). Moreover, it was also found in mice with glioblas-
toma and injected with CRISPR-LNP targeting PLK1, 
an enzyme essential for cell division, which successfully 
caused apoptosis in tumor cells after editing the gene 
encoding this enzyme within the tumor cells. Therefore, 
the results showed that mice with a single intracerebral 
injection of CRISPR-LNP compared to the control group 
had a gene-editing efficiency of 70%. In addition, the 
median survival of the mice increased from 32.5 days to 
more than 48 days, and 30% of the mice survived for at 
least 60 days, while the control mice at 40 days were all 
dead (Rosenblum et  al. 2020). Compared with pooled 
guide RNA libraries, CRISPR/cas9 may be used in a 
high-throughput method to filter for genes associated 
with specific biochemical phenotypes or illnesses (Esvelt 
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et al. 2014). This “phenotype to genotype” strategy plays a 
role in modifying gene expression by choosing cells that 
exhibit the phenotype of interest (Pereira and Weinshil-
boum 2009), followed by sequence analysis of the desired 
perturbations, which may identify genes that are involved 
in cell viability. In parallel, to determine the influence of 
single-gene knockouts on cell survival, a large-scale can-
cer-dependent loss-of-function screen was carried out 
in several well-characterized cancer cell lines. The Can-
cer Dependency Map (DepMap) website provides these 
data sets. This approach allows for the identification of 
key genes and regulatory pathways involved in a particu-
lar phenotype, which can then be manipulated to alter 
gene expression and cellular behavior. By emphasizing 
this strategy in our study, we were able to demonstrate 
the potential of using dCas9-based epigenetic editing to 
modify the expression of genes involved in cell differen-
tiation and reprogramming. This approach has significant 
implications for both basic research and clinical applica-
tions, and underscores the importance of understanding 
the relationship between genotype and phenotype in the 
context of complex biological systems.

The Hippo pathway is a significantly conserved cas-
cade signaling pathway in drosophila and mammals that 
plays a role in diverse biological activities, such as cell 
viability, proliferation, apoptosis, differentiation, cell fate 
determination, and tissue and organ size and homeosta-
sis through the regulation of key target genes (Seo et al. 
2020; Clattenburg et al. 2015). The abnormal signaling of 
the Hippo pathway is also implicated in multiple patholo-
gies, including cancer and immunity-related diseases 
(Merrick et al. 2019). YAP/TAZ is the predominant tran-
scription co-activator downstream of the Hippo pathway, 
shuttling between the cytoplasm and the nucleus (Shut-
tle) (Kim et al. 2020). The YAP/TAZ protein is the hub of 
the Hippo pathway, where a variety of upstream signaling 
molecules act directly or indirectly on YAP/TAZ, mainly 
to regulate the localization of YAP/TAZ, i.e., to regulate 
YAP/TAZ retention in the cytoplasm or nuclear locali-
zation (localization in the nucleus and interaction with 
corresponding transcriptional factors to modulate the 
target genes expression) (Corre et al. 2019). According to 
a previous study, NF2-deficient PRCC cancers that have 
lost the capacity of regulating the Hippo signaling path-
way could be treated with dasatinib, which targets Yes in 
YAP-activated tumors and inhibits its expression (Sour-
bier et  al. 2018). Another study showed that TFAP2C 
enhances CSCs’ properties and chemoresistance through 
transcriptional activation of ROCK1 and ROCK2, which 
are negative regulators of Hippo signaling, leading to 
deactivation of Hippo signaling in colorectal cancer 
cells (Wang et al. 2018). Moreover, the YAP/TAZ-TEAD 
transcriptional factor complex is an application target 

for oncogenic transformation. The YAP locus is shown 
to be upregulated at different frequencies in human and 
mouse tumors, such as medulloblastoma, lung, pancre-
atic, esophageal, hepatocellular, and breast cancers (Pan 
2010). In LGG, LATS2 suppresses the proliferative and 
metastatic ability of cells via the Hippo signaling pathway 
(Guo et  al. 2019). These studies suggest that the Hippo 
signaling pathway exerts a critical role in treating cancer.

The biological mechanisms involved in cell viability 
are complicated. Nonetheless, the cellular vulnerability 
of LGG has not been investigated in-depth in a system-
atic manner. Furthermore, the pathways via which these 
genes function and their prognostic value, have never 
been fully investigated. Thus, the field of bioinformatics 
plays a crucial role in identifying risk signatures, which 
can provide valuable insights into disease progression 
and potential treatment options. In this study, we utilized 
various bioinformatics tools to identify genes associated 
with the Hippo signaling pathway and their potential 
impact on cancer risk. Through a combination of com-
putational analysis and experimental validation, we were 
able to identify three genes, SOX9, RPE65, and LSM2, 
as potential biomarkers for cancer risk assessment. Our 
findings highlight the importance of bioinformatics in 
identifying and validating risk signatures for disease diag-
nosis and treatment.

Materials and methods
Identification of gene‑knockout effect based 
on CRISPR‑Cas9 and CERES
CERES, a computational method to estimate gene 
dependency levels from CRISPR-Cas9 essentiality 
screens while accounting for the copy-number-specific 
effect (Meyers et  al. 2017). Results of running CERES 
on 16 primary non-metastatic glioma cell lines screened 
with the Avana sgRNA library, namely CAS1, DKMG, 
GB1, HS683, KALS1, KNS60, KNS81, LN18, M059K, 
SF295, SNU201, T98G, U118MG, U251MG U87MG, and 
YKG1, were download from Depmap database. CERES R 
package (version 1.0.0) was used for the purpose of cal-
culating the dependency scores, aiming to detect genes 
that are critical for the ability of the cells lines to survive. 
Notably, a negative value for a gene score implies that 
silencing it suppresses the survival condition of a cell line, 
whereas a positive value demonstrates that silencing it 
enhances proliferation and survival. The growth inhibitor 
and growth promotor genes were defined using thresh-
olds of 0.5 and − 0.5, respectively. DEGs between tumor 
and normal samples were calculated using the “limma” 
R package (version 3.50.3). Adjusted p-value < 0.05 and 
absolute fold changes > 1 were used as thresholds for 
selecting DEGs. Growth inhibitor genes were intersected 
with down-regulated genes, whereas growth promoter 
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genes were intersected with up-regulated genes. The flow 
chart of our study was shown in Fig. 1.

Datasets
RNA-Seq data of 491 LGG samples from the TCGA 
database (Level-3 HTseq-FPKM) and 103 normal cor-
tical samples from the GTEx project were included in 
this study. These were used as normal sample controls, 
and after excluding non-coding RNA, differential analy-
sis was performed. In addition, 10 samples with dupli-
cate sequencing, no survival status, overall survival (OS) 
time < 1  day, no clear WHO classification, and non-pri-
mary LGG were excluded for subsequent modeling. LGG 
is defined as diffuse low-grade and intermediate-grade 
glioma (WHO grades II and III). Datasets were defined 
using International Classification of Diseases for Oncol-
ogy, third edition (ICD-O-3) codes 9382/3, 9400/3, 

9401/3, 9450/3, and 9451/3 (Gittleman et  al. 2020; Liu 
et  al. 2018). Finally, 481 LGG patients were enrolled in 
the study.

Processing of data in low‑grade glioma
The Cancer Genome Atlas (TCGA) database is a col-
lection of genomic data from different types of cancer, 
including gliomas. On the other hand, the Chinese Gli-
oma Genome Atlas (CGGA) database is a large-scale 
genomic data resource that is specifically focused on 
gliomas, and it contains a wealth of genomic informa-
tion such as gene expression profiles, DNA methylation 
patterns, and copy number variations. The 481 samples 
from the TCGA-LGG database were randomly split 7:3 
using the caret package, with TCGA-LGG-1 as the mod-
eling cohort. TCGA-LGG-2 was used as the internal vali-
dation cohort. In brief, the remaining 481 samples were 

Fig. 1 Flow chart of our study
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randomized into two groups, with 337 samples in LGG-1 
cohort and 144 samples in LGG-2 cohort. Meanwhile, 
the GSE16011 dataset based on the GPL570 platform 
was extracted from the GEO database, and 80 of the LGG 
patients with WHO classification II–III were retained as 
the external validation group (GEO-LGG). The GPL570 
platform, also known as the Affymetrix Human Genome 
U133 Plus 2.0 Array, contains probes for over 47,000 
transcripts, making it a commonly used tool for gene 
expression studies. The CGGA database was used to 
download the CGGA-693 project (CGGA-LGG-1, 332 
patients), and the CGGA-325 project (CGGA-LGG-2, 
162 patients) containing complete survival information 
of LGG patients as the external validation group. In sum-
mary, the TCGA-LGG-1 cohort was used for modeling, 
the TCGA-LGG-2 cohort for internal validation, and 
the GEO-LGG, CGGA-LGG-1, and the CGGA-LGG-2 
cohorts for external validation. In addition, the “sva” R 
package (version 3.42.0) was used to perform normaliza-
tion for the genes involved in the modeling, thus ensur-
ing comparability of validation.

LASSO regression analysis
In the TCGA-LGG cohort, the patients were classified 
into two datasets at random with a 7:3 ratio, namely the 
internal training and internal validation datasets. Risk 
models were constructed with the aid of the LASSO 
model, aiming to eliminate highly correlated genes. By 
incorporating gene expression values that their LASSO-
Cox coefficients have weighted, risk score formulas were 
developed. The prognostic significance of the risk scores 
was evaluated by performing univariate and multivariate 
Cox regression analyses using the entire dataset as well as 
the external validation dataset. Time-dependent subject 
operating characteristic curves (ROC) were used to eval-
uate the prediction performance of risk scores with con-
ventional clinical and pathological characteristics (Zhang 
et al. 2022). For the purpose of plotting ROC curves and 
calculating the area under the curve (AUC), the “pROC” 
R package (version 1.18.0) was utilized.

Enrichment analysis
Gene Ontology (GO) is a classification system that is 
used for annotating cell components, molecular func-
tions, and biological processes. Gene pathways were 
annotated using the Kyoto Encyclopedia of Genes and 
Genomes (KEGG). The “clusterProfiler” R package (ver-
sion 4.2.2) was employed to conduct the GO and KEGG 
analyses. The q-value < 0.05 and p-value < 0.05 were 
established as the criteria for identifying significantly 
enriched pathways. We performed GO and KEGG anal-
yses to gain insights into the potential biological func-
tions and signaling pathways that may be affected by the 

genes identified in our differential expression analysis. 
This analysis allows us to infer the potential roles of these 
genes in the biological processes, molecular functions, 
and cellular components of the glioma development and 
progression.

Creation of the PPI network and detection of hub
The STRING website provides information about avail-
able and anticipated protein–protein interactions, aiding 
the creation of PPI networks. Subsequently, the overlap-
ping gene interactions were visualized with the aid of the 
Cytoscape software (version 3.8.0).

Weighted correlation network analysis
In the WGCNA R package (version 1.71), all DEGs sat-
isfying the p-value < 0.05 in normal and tumor samples 
in the CGGA-LGG-1 cohort were used as input. Each 
sample was clustered well, with only a single outlier sam-
ple excluded using a shear line of 120 as the threshold. 
Subsequently, a soft threshold from 1 to 20 was used for 
topology calculation (Feng et  al. 2022), and the optimal 
soft threshold was determined to be 10. After converting 
the correlation matrix into an adjacency matrix accord-
ing to the soft threshold, it was then converted into a 
topological overlap matrix (TOM) for mean linkage hier-
archical clustering. Furthermore, the associated modules 
were subjected to classification based on the TOM, with 
the number of genes in each module not below 50. In the 
present research, the shear height of the gene modules 
was 0.2 (Cheng et  al. 2022), and similar modules were 
integrated. Finally, the correlation between the merged 
modules and the high-risk population was obtained with 
the help of the Pearson method.

Clinical samples
We chose tissues from patients with intractable epilepsy 
as the “normal” control tissues for our study because 
these samples were obtained from patients who did not 
have brain tumors or other neurological disorders. While 
these tissues may not be completely “normal” in the tra-
ditional sense, they represent a suitable control group for 
our study given the absence of tumors or other neuro-
logical disorders. In our study, we collected the 10 LGG 
tissues and 10 normal brain tissues were prepared for 
extracting RNA and protein. In addition, we obtained 
10 tumor tissues from LGG patients and 10 brain tissues 
from patients with intractable epilepsy for IHC sections. 
The study of human samples was approved by the Medi-
cal Ethical Committee of the first affiliated hospital of 
Xin-Jiang medical university.
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Immunohistochemistry
The detailed protocol about western blot, qRT-PCR and 
IHC were displayed in previous references (Zhu et  al. 
2015; Feng et al. 2020). In brief, paraffin-embedded tis-
sue sections were baked, dehydrated, and subjected to 
antigen repair on tissue slides. Then, endogenous per-
oxidase was inactivated with 3% hydrogen peroxide for 
15 min. The non-specific antigen was blocked using 5% 
BSA for 30  min at room temperature and incubated 
with primary antibody overnight at 4 °C. The next day, 
slides are incubated with the cognate secondary anti-
body for 1 h at room temperature. Then, DAB staining, 
hematoxylin staining, followed by dehydration in gradi-
ent ethanol and clear treatment of slides in xylene.

Western blot
Proteins from different tissues were extracted with 
RIPA buffer, then separated on SDS/PAGE and trans-
ferred to PVDF membranes, incubated overnight 
with the corresponding primary antibodies and incu-
bated with HRP-conjugated secondary antibodies, and 
finally the luminescence signal was detected by ECL. 
The following antibodies were used: GAPDH (1:2000, 
GB15002, Servicebio), SOX9 (1:1000, 67439-1-IG, pro-
teintech), RPE65 (1:1000, 17939-1-AP, proteintech), 
LSM2 (1:1000, 46289, SAB). GAPDH was used for nor-
malization. ImageJ software was used to evaluate and 
quantify the gray value for 20 samples.

qRT‑PCR
Total RNA was extracted from the tissues using TRI-
zol and then converted to cDNA using Servicebio®RT 
First Strand cDNA Synthesis Kit. Real-time PCR was 
performed using SYBR Green qPCR Master Mix (None 
ROX). Relative mRNA expression was determined 
based on CT values and normalized by the GAPDH 
expression levels. The cycling conditions used for PCR 
amplification were as follows: an initial denaturation 
step at 95  °C for 5 min, followed by 30 cycles of dena-
turation at 95  °C for 30  s, annealing at 55  °C for 30  s, 
and extension at 72  °C for 30  s, and a final extension 
step at 72  °C for 5  min. Sequences of primers were as 
follows:

GAPDH forward: 5′-GGA AGC TTG TCA TCA ATG 
GAA ATC -3′, GAPDH reverse: 5′-TGA TGA CCC 
TTT TGG CTC CC-3′;
SOX9 forward: 5′-GTC AAC GGC TCC AGC AAG 
AA-3′, SOX9 reverse: 5′-CGT TCT TCA CCG ACT 
TCC TCC-3′;

RPE65 forward: 5′-TGG GCC AGG ACT CTT TGA 
AG-3′, RPE65 reverse: 5′-TGC GGA TGA ACC TTC 
TGT GG-3′;
LSM2 forward: 5′-TCG TGG AAC TAA AGA ATG 
ACC TGA -3′, LSM2 reverse: 5′-CAT CCT GTA GCA 
ACT GTG TGTCG-3′.

Cell culture
The cell lines were purchased from iCell Bioscience 
Inc (Shanghai, China). The human astrocyte cell line 
NHA and glioma cell lines (U87, U251, and T98G) were 
employed in our study, because there are no particular 
LGG cell lines available. The Dulbecco’s modified Eagle’s 
medium (10% fetal bovine serum) was used to cultivate 
the cells.

Cell counting Kit‑8 assay
U87 and T98G cells was assessed with the Cell Count-
ing Kit-8 (Dojindo Molecular Technologies, Kyushu, 
Japan) reagent according to the manufacturer’s instruc-
tions (Zhou et  al. 2022). Briefly, cells were seeded in 
96-well plates and treated with different concentrations 
of compounds for 24, 48 or 72 h. After treatment, CCK-8 
reagent was added to each well, and the plates were incu-
bated for an additional 1.5 h. The absorbance was meas-
ured at 450 nm using a microplate reader (Synergy HTX, 
BioTek Instruments, Inc., Winooski, VT, USA).

Invasion assays
2 ×  104 cells were added into Matrigel-coated upper Tran-
swell chambers for the invasion assay. The lower cham-
bers were filled with DMEM containing 10% fetal bovine 
serum. After incubation at 37  °C for 24  h, cells on the 
lower surface of the membrane were fixed and stained. 
The pore size of the Transwell filter was 8  μm, and the 
filters were stained with crystal violet.

Lentivirus infection assay
Short hairpin RNA against RPE65 (sh-RPE65) and a 
negative control shRNA (sh-NC) were designed by 
genepharma (Shanghai, China). The lentivirus pLent-sh 
RPE65-GFP-Puro or its negative control (NC) pLent-
GFP-Puro was used to infect U87 and T98G cells. 2 g/mL 
puromycin was added 2 days after the cells were infected 
with lentivirus.

Wound healing
U87 and T98G cells were seeded in a 6-well plate and 
allowed to grow to confluence. A straight scratch was 
made in the center of each well with a 200-μL ster-
ile pipette tip. The cells were then washed with PBS to 
remove debris and serum-free medium was added to 
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each well. Images were captured at 0 and 48 h after the 
scratch using an inverted microscope.

Kaplan–Meier analysis
The Kaplan–Meier analysis, as well as the Log-rank test, 
were conducted to perform the survival analysis. Kaplan–
Meier analysis is a commonly used method in survival 
analysis to estimate the probability of survival over time 
for a group of individuals. It is often used in medical 
research to analyze the survival rates of patients with 
certain conditions or diseases. The analysis is based on a 
survival curve, which shows the proportion of individuals 
who survive over time. The significance of Kaplan–Meier 
analysis lies in its ability to estimate survival probabilities 
and identify differences in survival rates between groups, 
which can help in the development of better treatment 
strategies and patient care.

Data analysis
All data processing, statistical analysis, and plotting were 
conducted in R 4.0.5 software. Correlations between two 
continuous variables were assessed via Pearson’s correla-
tion coefficients. The chi-squared or fisher exact test was 
applied to compare categorical variables, and continuous 
variables were compared through the Wilcoxon rank-
sum test or T test (Liu et al. 2022). The p-value < 0.05 was 
established as the criterion for determining statistical 
significance.

Result
Determination of functional genomic genes in low‑grade 
glioma
Heat map shows the Top 10 differential genes expressed 
in TCGA (Additional file 8, Fig. 2A). Cell lines of 16 pri-
mary gliomas were scored for dependency. Figure  2B 
depicts the scores assigned to oncogenes according to 
their dependence on other genes. The genes with depend-
ency scores below − 0.5 in all glioma cell lines intersected 
with genes that were up-modulated in TCGA, and 145 
genes were found (Additional file  8). Moreover, genes 
whose dependency scores were above 0.5 in all glioma 
cell lines were intersected with genes downmodulated in 
TCGA, yielding only six genes (Fig.  2C). The 145 genes 
identified were designated as the oncogenes. The three 
most enriched pathways in GO analysis were spindle 
organization, spliceosomal complex, and ribonucleopro-
tein complex binding (Fig. 2D). Interestingly, the findings 
obtained from KEGG analysis demonstrated enrichment 
of these oncogenes in the cell cycle, Hippo signaling 
pathway, and other pathways (Fig. 2E). The PPI network 
shows that these proteins contain 150 nodes with 794 
edges between them (Additional file 2: Fig. S1A). Nodes 
in the context of our study represent the genes, and edges 

represent the interactions between them. These interac-
tions can be physical interactions such as protein–protein 
interactions or functional interactions such as co-regula-
tion. Overall, the mutation rates of all these genes were 
low, with only PDGFRA, SRBD1, CCDN1, CDC73, and 
ACLY having > 1% mutation frequency among the 145 
oncogenes (Additional file 2: Fig. S1B), and no significant 
mutations in the other six intersecting genes (Additional 
file 2: Fig. S1C).

Creation and verification of the gene signature
The “sva” package was used for background correction, 
normalization, and expression calculation for the genes 
involved in their modeling (Additional file  3: Fig. S2). 
With the aid of the Lasso regression model, a sum of 19 
genes was filtered and used to construct risk equations. 
Additional file  1: Table  S1 contains the coefficients 
derived. In the internal training dataset, a median risk 
score of 0.752324 was used as the threshold to clas-
sify patients into low- and high-risk groups, and the 
same threshold was used in the other validation data-
sets. In the modeling set, the patients’ OS was found 
to be remarkably improved in the low-risk group as 
opposed to that of the high-risk patients. In Additional 
file  4: Fig. S3A, B, the result indicates that the prog-
nostic marker of risk score was valid (p-value < 0.001). 
The analytic results of the survival curves demon-
strated that the LGG patients with a high-risk profile 
had a 3-year survival rate of about 56.34% with a 95% 
CI confidence interval of [47.18–67.3%]. LGG patients 
with a low-risk profile had a 3-year survival rate of 
about 97.2% with a 95% CI of [93.9–100%]; In the high-
risk LGG patients, the 5-year survival rate was found 
to be about 37.58% with 95% CI [27.45–51.4%], much 
lower than that of the low-risk LGG patients who had 
a rate of about 89.3% with 95% CI confidence interval 
[78.86–100%]; For LGG patients with a high-risk pro-
file, the 10-year survival rate was found to be about 
12.54% with 95% CI [5–31.4%], whereas that of the 
low-risk LGG patients was about 65.1% with a 95% CI 
of [43.50–97.3%]. The AUC for 1, 3, and 5  years was 
0.865, 0.910, and 0.874, respectively, according to the 
analysis results of the ROC curves for the different 
periods. Validation of the above results was performed 
in both the internal and external validation datasets. 
As anticipated, in the internal validation dataset, the 
findings recorded from the Kaplan–Meier curve dem-
onstrated a short OS duration in patients belonging 
to the high-risk group as opposed to patients belong-
ing to the low-risk group, with a statistically significant 
difference (p-value < 0.05). The analytical findings from 
the survival curves demonstrated that the high-risk 
LGG patients exhibited a 3 and 5-year survival of about 
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60.3% and 36.3%, respectively. In addition, 95% CI was 
[47.2–76.9%] and [20.4–64.5%], respectively. In low-
risk LGG patients, the survival rates were about 89.1% 
and 62.6% at 3 and 5  years, respectively. 95% CI were 
[79.2–100%] and [44.0–89.0%], respectively. The analy-
sis of ROC curves over 1, 3, and 5 years generated AUC 
values of 0.861, 0.878, and 0.690, respectively.

In the CGGA-LGG-1 cohort, the results obtained by 
the survival curves demonstrated a remarkably short-
ened OS duration in the high-risk patients as opposed 
to that of patients belonging to the low-risk group 
(p-value < 0.001). For the high-risk LGG patients, the 
survival rates at 3 and 5  years were about 59.4% and 
46.4%, respectively. Moreover, 95% CI was [52.6–67.0%] 

Fig. 2 Oncogene determination with the aid of the TCGA and Depmap datasets. A The top ten genes with differential expression between tumor 
and normal samples in the TCGA dataset. B Oncogenes’ dependence scores in primary glioma cell lines. C Genes that were overlapped in both the 
TCGA and Depmap datasets. D A total of 45 genes were subjected to GO analysis. E A total of 45 genes were subjected to KEGG analysis
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and [39.2–54.9%], respectively. For the low-risk patients, 
the survival rates at 3 and 5 years were about 74.9% and 
66.9%, respectively. Moreover, 95% CI were [68.1–82.4%] 
and [59.3–75.5%]. Overall, the AUC values recorded from 
the ROC curve analysis of the CGGA-LGG-1 cohort for 
1, 3, and 5 years were 0.726, 0.702, and 0.703, respectively. 
Similarly, in the CGGA-LGG-2 cohort, high-risk patients 
exhibited an unfavorable OS in contrast with that of 
the low-risk patients (p-value < 0.001), with AUC values 
obtained from ROC curves for 1, 3, and 5  years being 
of 0.736, 0.767, and 0.743, respectively. Interestingly, no 
significant differences were observed in the GEO-LGG 
cohort between patients in the high- and low-risk groups 
in terms of OS (p-value = 0.051). Following the adjust-
ment for clinical and pathological factors, Cox regression 
demonstrated that risk score independently served as a 
prognostic feature across the training set. In the entire 
training TCGA-LGG set (Fig. 3A, B, p-value < 0.001, HR: 
1.060, 95% CI 1.036–1.085) and the external validation 
CGGA-LGG set (Fig. 3C, D, p < 0.05, HR: 1.016, 95% CI 
1.003–1.029), the GEO-LGG set (Fig. 3E, F, p < 0.001, HR: 
1.171, 95% CI 1.074–1.276), the risk score was shown 
to independently function as prognostic feature. In the 
TCGA-LGG full set, differences in OS stratified by clin-
icopathological characteristics of the universals, i.e., high- 
and low-risk groups, were analyzed by stratification. For 
the low-risk cohort, the OS remained superior in the 
high-risk group (Fig. 4A–F) according to subgroups clas-
sified by sex, age, tumor grade, and mutational status of 
ATRX, EGFR, PTEN, TP53, and IDH (Additional file  5: 
Fig. S4).

In addition, the predictive efficacy of independent 
prognostic factors was predicted in multifactorial Cox 
regression in the CGGA cohort and TCGA cohort. In 
Additional file  6: Fig. S5A, for the 3-year tROC curve, 
the AUC areas for age, risk score, and tumor grade 
were 0.487, 0.858, and 0.527 respectively for the entire 
TCGA-LGG dataset. For the 5-year tROC curve, the 
AUC areas for risk score, age, and tumor grade in the 
whole TCGA-LGG dataset were 0.882, 0.485, and 0.435, 
respectively. For the 10-year tROC curve, the AUC areas 
for risk score, age, and tumor grade in the whole TCGA-
LGG dataset were 0.797, 0.486, and 0.465, respectively. 
In Additional file 6: Fig. S5B, for the 3-year tROC curve, 
the AUC areas for risk score, IDH mutation status, and 
chromosome 1p19q joint deletion in the externally vali-
dated CGGA-LGG dataset were 0.723, 0.354, and 0.371, 
respectively. For the 5-year tROC curve, the AUC areas 
for risk score, IDH mutation status, and 1p19q joint chro-
mosome deletion in the externally validated CGGA-LGG 
dataset were 0.718, 0.366, and 0.340, respectively. For the 
10-year tROC curve, the AUC areas for risk score, IDH 
mutation status, and 1p19q joint chromosome deletion in 

the externally validated CGGA-LGG dataset were 0.708, 
0.394, and 0.318, respectively.

DEGs between low‑ and high‑risk subgroups
328 DEGs were identified in the CGGA-LGG-1 dataset by 
calculating DEGs between the high- and low-risk groups 
(Fig. 5A, B). These findings demonstrated an enrichment 
of the above DEGs in GO analysis for extracellular matrix 
structural constituent, collagen-containing extracellular 
matrix, and extracellular matrix organization (Fig.  5C). 
Moreover, they were also enriched in KEGG analysis in 
the p53 signaling pathway, Hippo pathway, and P13K-
Akt signaling pathway (Fig. 5D). Interestingly, the Hippo 
pathway was shown to be a crucial mechanism in regu-
lating cell viability both in our signature and in the DEG 
enrichment analysis.

WGCNA
The WGCNA method was adopted for the purpose of 
identifying hub genes in the CGGA-LGG-1 dataset. The 
soft threshold power was set as 10 to guarantee that the 
network was scale-free (Fig. 5E). With a cutoff height of 
0.2, 16 clusters were clustered (Fig. 5F). It was discovered 
that different modules were correlated with the high-risk 
group (Fig.  5G), which included the green-yellow mod-
ule (correlation coefficient = 0.29, p-value < 0.001), pink 
module (correlation parameter = 0.28, p-value < 0.001), 
and grey module (correlation coefficient = 0.34, 
p-value < 0.001). Genes from the three CGGA-LGG-1 
datasets overlapped with 145 oncogenes, yielding a total 
of 13 genes (Fig. 5H). The topmost 3 enriched pathways 
identified by the KEGG enrichment analysis comprised 
the Hippo pathway, spliceosome, and Coronavirus Dis-
ease 2019 (COVID-19) (Fig. 6A). In GO analysis, the top-
most 3 genes with high enrichment levels among these 13 
genes were ribosome, ribosomal subunit, and structural 
constituent of ribosome (Fig.  6B). Among the 13 over-
lapping genes, three genes (SOX9, RPE65, LSM2) were 
enriched in the Hippo pathway.

Validation of SOX9, RPE65, LSM2 in clinical samples
To verify the reliability of the hub genes (SOX9, RPE65, 
LSM2) obtained from the bioinformatics analysis, we 
explored the abnormal expression of hub genes in LGG 
samples combined with normal cortical samples from 
the GTEx database. The results showed three hub genes 
were highly expressed in tumor samples (Fig.  6C). 
Moreover, we collected 10 LGG samples and 10 normal 
brain tissues to detect the expression level of hub genes 
by qRT-PCR and western blot. In the results of qRT-
PCR, the mRNA level of RPE65 were highly expressed 
in LGG samples, however, there was no difference 
in the expression of other genes in different samples 
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(Fig. 6D). In the results of western blot, the protein level 
of RPE65, LSM2 were highly expressed in LGG samples 
(Fig. 6E). Finally, we used IHC section to further detect 
the expression of SOX9, RPE65, LSM2 (Fig. 7). There is 
no doubt that the expression of the three genes was sig-
nificantly different for both IHC in the public database 
and in our cohort. Importantly, protein and mRNA 

expression of RPE65 was significantly up-regulated in 
tumor cells in different cohorts. Moreover, we explored 
the differences in RPE65 in WHO grades as well as 
pathological types, and the results showed that RPE65 
did not differ significantly between grades (Additional 
file  7: Fig. S6A). Interestingly, RPE65 was lowest in 

Fig. 3 Cox regression analysis of the TCGA-LGG and validation cohorts on multivariate and univariate models. A Analysis of the TCGA-LGG cohort 
using univariate Cox regression. B Parameters significant in univariate Cox regression were included in multivariate Cox regression analysis in the 
TCGA-LGG cohort. C Cox regression analysis using a univariate model in the CGGA-LGG cohort. D Parameters significant in univariate Cox regression 
were included in multivariate Cox regression analysis in the CGGA-LGG cohort. E Analysis of the GEO-LGG cohort using univariate Cox regression. F 
Parameters significant in univariate Cox regression were included in multivariate Cox regression analysis in the GEO-LGG cohort
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Fig. 4 The Kaplan–Meier plot depicts the risk score for each subtype. Kaplan–Meier plot of the risk score in patients with age < 40 (A), patients with 
age ≥ 40 (B), patients with female (C), patients with male (D), WHO Grade 2 (E), and WHO Grade 3 (F) in the TCGA-LGG dataset

(See figure on next page.)
Fig. 5 The differences in various variables between low- and high-risk patients. A In the CGGA-LGG-1 dataset, heatmaps show differentially 
expressed genes (DEGs) between high- and low-risk groups. B DEGs in the CGGA-LGG-1 dataset between high- and low-risk groups. C 
Up-modulated genes were analyzed using the GO algorithm. D Analysis of up-modulated genes using the KEGG database. E Scale-free fit index 
analysis for different soft threshold powers. F Modules for mRNA co-expression networks. G Heatmap depicting the traits relationship between 
low- and high-risk groups. H Venn diagram depicting 145 oncogenes and WGCNA modules that share overlapping genes
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Fig. 5 (See legend on previous page.)
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Fig. 6 Validation of SOX9, RPE65, LSM2 using qRT-PCR and western blot in clinical samples. A Analysis of overlapping genes using the KEGG 
database. B GO analysis of genes that are overlapping. C mRNA expression of SOX9, RPE65, LSM2 in public database. D The mRNA expression of 
SOX9, RPE65, LSM2 in our cohort (n = 10). E The protein expression of SOX9, RPE65, LSM2 in our cohort (n = 10). *P < 0.05, **P < 0.01, ***P < 0.001, 
****P < 0.0001. Error bars indicate mean ± SD



Page 14 of 20Mijiti et al. Molecular Medicine           (2023) 29:64 

oligodendroglioma compared to other pathological 
types (Additional file 7: Fig. S6B).

In vitro assays
RPE65 was filtered as the candidate molecule to perform 
cell function assays. Real-time qPCR analysis indicated 

that RPE651 was significantly up-regulated in three gli-
oma cell lines (Fig.  8A). The knock-down efficiencies of 
sh-RPE65 were detected using western blot and real-
time qPCR, which revealed highest transfection effi-
ciency in T98G and U87 cells (Fig.  8B, C). The CCK-8 
assay showed that the viability of T98G and U87 cells 

Fig. 7 Validation of SOX9, RPE65, LSM2 using IHC. A Representative IHC staining images of SOX9 in HPA database. B Representative IHC staining 
images of LSM2 in HPA database. C Representative IHC staining images of RPE65 in our cohort (n = 10). D Representative IHC staining images of 
SOX9 in our cohort (n = 10). E Representative IHC staining images of LSM2 in our cohort (n = 10). A, B Scale bars = 500 μm; C–E Scale bars = 500 μm
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was suppressed (Fig. 8D). Importantly, the invasion and 
migration ability of tumor cell lines was suppressed after 
transfection and quantify in T98G and U87 cells with box 
plots (Fig. 8E, F).

Discussion
The incidence of LGG is increasing worldwide (Zhang 
et  al. 2020). LGG patients have a relatively favorable 
prognosis. However, these gliomas frequently advance 
to high-grade gliomas, which may cause reoccurrence or 
death due to malignant biological characteristics, includ-
ing aggressive proliferation and radiotherapy resistance. 
Recent studies reported that LGG tumor markers are 
highly predictive of prognosis and successful treatment 
(Smith and Schwartz 1984). These molecular markers are 
EGFR mutation status, PTEN mutation status, MGMT 
promoter methylation, TP53 mutation status, 1p/19q 
chromosome deletion, ATRX mutation status, and IDH1 
mutation status (Roszkowski et  al. 2016). The cause of 
LGG is characterized by various alterations in oncogenes. 
Crispr-cas9 screening, as a foundational technique, is 
an excellent approach to identify synthetic lethal genes 
in a systematic manner (Hewitt et al. 2021). The present 
research combined the findings of DepMap’s low-grade 
glioma CRISPR-cas9 screen with the TCGA dataset, 
yielding a total of 145 oncogenes that are abundantly 
expressed and lethal to LGG. According to the results 
of the enrichment analysis, the Hippo signaling pathway 
was shown to be significantly enriched in these genes. 
In addition, a gene signature was constructed from the 
145 genes, which might be used to classify patients into 
2 groups, namely the high- and low-risk groups. More-
over, the Hippo signaling pathway was also significant 
when analyzing DEGs between high- and low-risk groups 
and genes. The intersection between the 145 oncogenes, 
WGCNA analysis, and DEGs also highlighted the Hippo 
pathway, indicating its importance for the viability of 
LGG.

The changes in gene expression profile based on 
CRISPR/Cas9 system from DepMap database would 
enable the identification of hub genes, to decipher the 
molecular mechanism of LGG. In our study, we found 
three Hippo signaling pathway-related genes are mainly 
involved in the functional regulation. SOX9 (SRY-Box 
Transcriptional Factor 9) is a Protein Coding gene that 
performs an integral role in encoding a protein that 

distinguishes the CCT TGA G sequence in addition to 
other members of the HMG box class of DNA bind-
ing proteins (Wang et  al. 2007). SOX9 plays a role in 
chondrocyte differentiation and is involved in the pro-
tein kinase activity and DNA-binding transcriptional 
factor (Ye et  al. 2020). It has been demonstrated that 
SOX9 enhances the epithelial-mesenchymal transi-
tions in gastric cancer cells via the mechanism of acti-
vating the Hippo-YAP signaling pathways (Zhou et  al. 
2019). In addition, the deletion of the YAP1 or SOX9 
genes through CRISPR/Cas9 inhibited PPARδ-induced 
oncogenic activity. PPARδ collaborates with the hippo 
coactivator YAP1 to elevate the expression level of 
SOX9 and the progression of gastric cancer (Song et al. 
2020). SOX9 expression is correlated with an unfavora-
ble prognosis and TMZ resistance in GBM patients (Xu 
et al. 2018). Despite the fact that SOX2-SOX9 serves as 
an oncogenic axis that modulates the characteristics of 
stem cells and the resistance to chemotherapy. On the 
other hand, rapamycin attenuated the production of 
SOX protein, and it was found that combining rapa-
mycin and temozolomide suppressed the progression 
of glioma in cells that expressed high levels of SOX2/
SOX9 (Garros-Regulez et  al. 2016). In patients with 
glioma, a higher level of SOX9 expression is correlated 
with an unfavorable prognosis (Wang et al. 2012). The 
results show that SOX9 is essential to the survival of 
LGG. Further research discovered that Hippo coacti-
vator YAP1 stimulates SOX9 expression in esophageal 
cancer cells, resulting in these cancer cells exhibiting 
stem cell-like characteristics (Song et  al. 2014). SOX9 
trans-activated long non-coding RNA NEAT1, which 
stimulates self-regeneration of hepatocellular carci-
noma stem cells via the PKA/Hippo pathway (Cheng 
et  al. 2021). RPE65 (retinoic acid isomerase RPE65) is 
a protein-coding gene, and activity of RPE65 could be 
essential to the elimination of all-trans retinal, which 
are substrates for the synthesis of retinoic acid from 
skin cells (Amann et al. 2012). In addition, deletion of 
retinal pigment epithelial extracellular signal-regulated 
kinase 1/2 leads to reduced RPE65 and retinal degener-
ation (Pyakurel et al. 2017). LSM2 (LSM2 homolog, U6 
small nuclear RNA, and mRNA degradation-related) 
belongs to the LSM family of encoded RNA-binding 
proteins. It has been shown to perform a function in 
pre-mRNA splicing as a constituent of the U4/U6–U5 

Fig. 8 RPE65 in vitro. A The expression level of RPE65 in different cell lines. qRT-PCR (B) and western blot (C) was used to analyse the expression 
level of RPE65 in transfection by sh-NC or sh-RPE65 for 24 h. D Cell viability of U87 or T89G cells after knocking down RPE65 was determined using 
CCK8 assays. E Invasion ability of cells after knocking down RPE65 was determined using transwell assays and quantify in T98G and U87 cells with 
box plots. F Migration ability of cells after knocking down RPE65 was determined using wound healing assays and quantify in T98G and U87 cells 
with box plots (magnification and wound healing: ×100). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. Error bars indicate mean ± SD

(See figure on next page.)
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Fig. 8 (See legend on previous page.)
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tri-snRNP complex involved in the assembly of the 
spliceosome and as a constituent of the catalytic pre-
snRNP complex (spliceosome B complex) (Bertram 
et  al. 2017). A particular binding site for the hepta-
meric LSM2-8 complex is the 3′-terminal U-bundle of 
snRNA U6 (Achsel et al. 1999). A previous study shows 
that LSM2-8 and XRN-2 contribute to the silencing of 
H3K27me3 marker genes by targeting RNA decay (Mat-
tout et al. 2020). By facilitating the decay of these RNA 
transcripts, LSM2-8 and XRN-2 are able to prevent the 
expression of the genes they derive from, ultimately 
leading to their silencing. Overall, the findings of this 
previous study suggest that RNA decay is an important 
mechanism for regulating gene expression, and that 
LSM2-8 and XRN-2 are key players in this process. The 
findings of the CRISPR-cas9 screen indicate that the 
suppression of these genes resulted in cell death in all 
kinds of LGG. The antagonism of these genes could be 
a feasible method for the treatment of LGG. The over-
expression of these genes in LGG may be a promising 
target for drug development in the future.

The limitations of our study also need to be discussed. 
Firstly, although some clinical samples and vitro assays 
have been conducted to validate, there is no evidence 
based on mass of clinical data to verify our prediction 
results. Our follow-up studies are focusing on correla-
tion between REP65 and Hippo pathway. Despite pre-
vious research creating predictive signatures based 
primarily on gene expression, gene expression was 
integrated with functional genomic screening in the 
present research. Irrespective of their tumor grade, the 
genetic profile can distinguish between high and low-
risk individuals. Therefore, suitable targeted medica-
tions may be used for the purpose of enhancing the 
prognosis of patients with a high risk. The prediction 
performance of the proposed signature is superior to 
classical clinicopathological parameters, such as IDH1 
mutation status, tumor grade, or 1p19q staining com-
bined with ablation. However, molecular subtyping 
and tumor grading are widely used in clinical practice. 
Apart from age and tumor grade, this signature is the 
only independent prognostic variable in multivariable 
logistic regression.

Conclusion
In summary, this study systematically investigates 
genes susceptible to cell viability, and the Hippo sign-
aling pathway is crucial to this process. The gene sig-
nature proposed in this study was combined with a 
functional genomic screening that predicted the progno-
sis of patients with LGG more accurately in contrast with 

conventional clinicopathological markers. These genes 
associated with the Hippo signaling pathway can be tar-
geted for the treatment of LGG.
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