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Abstract 

The metabolism of glucose and lipids is essential for energy production in the body, and dysregulation of the meta‑
bolic pathways of these molecules is implicated in various acute and chronic diseases, such as type 2 diabetes, 
Alzheimer’s disease, atherosclerosis (AS), obesity, tumor, and sepsis. Post-translational modifications (PTMs) of proteins, 
which involve the addition or removal of covalent functional groups, play a crucial role in regulating protein structure, 
localization function, and activity. Common PTMs include phosphorylation, acetylation, ubiquitination, methylation, 
and glycosylation. Emerging evidence indicates that PTMs are significant in modulating glucose and lipid metabolism 
by modifying key enzymes or proteins. In this review, we summarize the current understanding of the role and regula‑
tory mechanisms of PTMs in glucose and lipid metabolism, with a focus on their involvement in disease progression 
associated with aberrant metabolism. Furthermore, we discuss the future prospects of PTMs, highlighting their poten‑
tial for gaining deeper insights into glucose and lipid metabolism and related diseases.
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Introduction
Glucose and lipid metabolism, the main source of energy, 
is critical for the physiological functions of all tissues 
and organs (Chen et  al. 2019). Dysregulation of glucose 
and lipid metabolism is a risk factor for many acute and 
chronic diseases, such as type 2 diabetes, Alzheimer’s dis-
ease (AD), atherosclerosis (AS), obesity, tumor, and sep-
sis (Cheng et al. 2016; Garcia et al. 2023; Gasbarrino et al. 
2023; Takeuchi et al. 2023; Yassine et al. 2022). Glucose 
and lipid metabolism in the body is regulated by various 

proteins, including key enzymes. Any factor that affects 
these proteins may influence the metabolic processes. 
Recently, studies have confirmed that post-translational 
modifications (PTMs) participate in the metabolic pro-
cesses of glucose and lipids and have a critical impact on 
diseases arising from aberrant glucose and lipid metabo-
lism (Sawant et al. 2022; Stocks and Zierath 2022).

PTM refers to the reversible or irreversible covalent 
processing of some proteins after translation, which 
occurs at the amino acid side chains, C-terminus, or 
N-terminus (Ramazi and Zahiri 2021). Based on their 
biochemical origin, PTMs are divided into enzymatic 
(ePTMs) and non-enzymatic (nPTMs) (Jennings et  al. 
2022; Wold 1981). The effects of ePTMs are precisely 
controlled by PTM enzyme readers, writers, and eras-
ers, which can add or remove modifications (Jennings 
et  al. 2022). In contrast, nPTMs usually occur sponta-
neously between nucleophilic or redox-sensitive amino 
acid side chains and reactive metabolites (Harmel and 
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Fiedler 2018). Approximately two-thirds of proteins 
in  vivo undergo PTMs; these modifications include 
phosphorylation, acetylation, ubiquitination, methyla-
tion, and glycosylation. Emerging evidence reveals that 
PTMs can expand the diversity of proteins by influenc-
ing their functions via altering protein structure, locali-
zation, and activity. Ultimately, PTMs play a vital role in 
various physiological and pathophysiological processes, 
such as cell replication, cell death, transcription regula-
tion, translation regulation, cellular signal transduction, 
and immune regulation (Fig.  1) (Meng et  al. 2021; Pat-
wardhan et al. 2021; Yu et al. 2022), and are also involved 
in glucose and lipid metabolism. For example, Lorendeau 
et al. focused on the metabolic regulation of signaling and 
transcriptional regulation of mammalian target of rapa-
mycin (mTOR), AMP-activated protein kinase (AMPK), 
and p53, and discussed functional consequences of PTMs 
on these enzymes (Lorendeau et al. 2015).

In this review, we summarize the types and roles of 
PTMs and illustrate their molecular mechanisms in reg-
ulating glucose and lipid metabolism. Additionally, we 
highlight the roles and mechanisms of PTMs in diseases 

associated with aberrant glucose and lipid metabolism. 
Our review aims to provide insights into the treatment 
of diseases associated with dysregulated glucose and lipid 
metabolism.

Common types of PTMs
PTMs are complex processes that play extremely impor-
tant roles in almost all cellular activities. Exploring the 
regulatory processes of PTMs is of great significance for 
understanding the molecular mechanisms or finding new 
biomarkers for various diseases. There are currently more 
than 400 known PTMs. The most common modifications 
of proteins associated with glucose and lipid metabolism 
include phosphorylation, acetylation, ubiquitination, 
SUMOylation, lactylation, methylation, S-glutathionyla-
tion, and glycosylation (Table 1).

Phosphorylation
Phosphorylation is the process by which phosphate 
groups bind to substrates and thus regulate protein 
activity and interactions under the regulation of pro-
tein kinases (Cohen 2002). Phosphorylation affects at 

Fig. 1  Functions and effect of post-translational modifications in physiology and pathology
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least one-third of eukaryotic proteins (Cohen 2000). 
It is widely involved in regulatory processes, includ-
ing membrane transport, protein degradation, regula-
tion of enzyme activity (activation or inhibition), and 
protein interactions. Thus, phosphorylation plays a vital 
role in regulating cell apoptosis, mitochondrial function, 
inflammatory response, oxidative stress, cellular signal-
ing, translocation, and autophagy (Carlson et  al. 2020; 
Hepowit et  al. 2022; Liu et  al. 2021a; Peng et  al. 2017; 
Ross et al. 2023; Zhang et al. 2022). Protein phosphoryla-
tion is one of the most common and important PTMs 
(Sacco et al. 2012). It is a reversible process that is regu-
lated by protein kinases and phosphatases.

The most common phosphorylation sites are in the 
amino acid side chains of serine (Ser), threonine (Thr), 
and tyrosine (Tyr) residues (Seok 2021). Overall, phos-
phorylated Ser is the most abundant (86%), followed 
by Thr (12%) and Tyr (2%) (Olsen et  al. 2006). Phos-
phorylation plays critical regulatory roles in glycolipid 
metabolism. For example, phosphorylation of the Ser473 
site of protein kinase B (Akt) inhibits the activity of 
GSK3β, thereby activating glycogen synthase to reduce 
blood sugar in HepG2 cells (Gao et al. 2018). Addition-
ally, Galectin-3 can mediate cardiac remodeling due to 
impaired glycolipid metabolism by inhibiting Akt phos-
phorylation at Thr308/Ser473 (Sun et al. 2021b). AMPK 
phosphorylation by cellular repressor of E1A stimulated 
genes 1 (CREG1) can lead to glucose uptake in skeletal 
muscle cells (Goto et  al. 2023). Therefore, phosphoryla-
tion sites may have the potential to serve as biomarkers 
for glucose and lipid metabolism diseases or even as pos-
sible therapeutic targets.

Acetylation
Acetylation, a type of PTM that has been extensively 
explored, refers to the process of acetyl group transfer 
from acetyl coenzyme A to lysine or other amino acid 
residues of target proteins. It is catalyzed by acetyl-
transferases and regulates gene transcription and signal 
transduction (Drazic et  al. 2016). It is a reversible pro-
cess that is regulated mainly by lysine acetyltransferases 
(KATs) and lysine deacetylases. Acetylation is classified 
as Nα-acetylation, Nε-acetylation, and O-acetylation, 
depending on the addition of acetyl groups to different 
amino acids and at different sites (Lee et al. 2010). One of 
the first modifications of histone discovered was acetyla-
tion, wherein an acetyl group is added to lysine residues 
at the N  terminus  of histone protein, which regulates 
gene transcription by affecting the binding of DNA to 
histones (Verdone et  al. 2005). Notably, KAT-mediated 
histone acetylation affects epigenetic processes (He et al. 
2018). For example, the activation of Toll-like recep-
tors can promote histone acetylation and thus regulate 

Myeloid differentiation primary response 88 (MyD88) 
and Toll/Interleukin-1 receptor-domain-containing 
adapter-inducing interferon-β (TRIF) signaling, lead-
ing to the activation of adenosine triphosphate (ATP)-
citrate lyase and thereby promoting energy metabolism 
(Lauterbach et al. 2019). Recruitment of hypoxia-induc-
ible factor 1 alpha (HIF1α) to hypoxia-responsive ele-
ments induces glucose uptake through its interaction 
with p300-dependent histone acetylation (Anand et  al. 
2023). Recently, several non-histone acetylations have 
been identified that mainly affect gene transcription, 
DNA damage repair, protein folding, cell division, signal 
transduction, autophagy (Narita et  al. 2019). Moreover, 
acetylation is important for the regulation of metabolism 
(Zhao et al. 2010). For instance, Zhang et al. discovered 
that histone deacetylase 8 could alter the glucose metab-
olism of hepatocellular carcinoma cells by controlling the 
acetylation of the PKM2 protein at the K62 site, leading 
to a predominant utilization of glucose through the pen-
tose phosphate pathway (Zhang et  al. 2020a). Thus, the 
balance between acetylation and deacetylation is cru-
cial, and disruption of this balance may lead to disease 
development.

Ubiquitination and SUMOylation
Ubiquitination, a common PTM, refers to the process 
in which ubiquitin covalently binding to target proteins 
and is catalyzed by a three-enzyme cascade, composed of 
E1 ubiquitin-activating enzymes, E2 ubiquitin-conjugat-
ing enzymes, and E3 ubiquitin ligases. Ubiquitin (Ub), a 
highly conserved 76-amino acid protein, contains seven 
lysine residues (K6, K11, K27, K29, K33, K48, and K63), 
each of which is ubiquitinated to form distinctive forms 
of polyubiquitin chains (Swatek and Komender 2016). 
Various lengths and types of ubiquitinated chains deter-
mine the fate of substrate proteins and mediate differ-
ent signaling pathways. Although ubiquitination mainly 
regulates the degradation of proteins, studies have found 
that ubiquitination also plays vital roles in regulating 
protein activity, protein–protein interactions, subcellu-
lar localization, and signal transduction (Komander and 
Rape 2012; Rajalingam and Dikic 2016). For instance, 
K48-linked chains are responsible for targeting substrate 
proteins for proteasomal degradation, while K63-linked 
chains are involved in several nonproteolytic functions, 
such as nuclear factor (NF)-κB activation and DNA 
damage repair (Emmerich et  al. 2016; Liu et  al. 2018; 
Yu et  al. 2021). Numerous studies have confirmed that 
ubiquitination is widely involved in various physiologi-
cal and pathological processes, such as transcriptional 
regulation, cell proliferation, cell apoptosis, DNA dam-
age repair, and immune regulation (Roberts et  al. 2022; 
Zhong et al. 2022). Notably, ubiquitination is a dynamic 
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and reversible process, and can be counteracted by deu-
biquitinases (Mevissen and Komander 2017). A dynamic 
balance between ubiquitination and deubiquitination is 
necessary to maintain protein homeostasis and function, 
and abnormalities in the ubiquitin system are associated 
with the occurrence of many diseases, including neuro-
degenerative diseases, immune diseases, and cancers 
(Cockram et al. 2021; Liu et al. 2022a).

SUMOylation is an essential PTM similar to ubiqui-
tination. During SUMOylation, a small ubiquitin-like 
modifier (SUMO) protein covalently binds to target 
proteins on lysine residues, which is mediated by a spe-
cific SUMO E1 activating enzyme, SUMO E2 conjugat-
ing enzyme, and SUMO E3 ligase. Unlike ubiquitination, 
SUMOylation mainly mediates the localization and func-
tional regulation of target proteins instead of promot-
ing degradation (Vertegaal 2022; Zhao 2018). Notably, 
SUMOylation is reversible, and deSUMOylation is medi-
ated by SUMO-specific proteases, predominantly of the 
Sentrin/SUMO-specific proteases (SENPs) family. Imbal-
ances in SUMOylation and deSUMOylation have been 
observed in the progression of various diseases (Mustfa 
et  al. 2017; Zheng et  al. 2020) including metabolism-
related diseases (Sadeghi et  al. 2023; Sapir 2020; Zhu 
et  al. 2022b). Notably, SUMOylation and deSUMOyla-
tion have been found to be important in regulating glu-
cose and lipid metabolism. For example, Zheng et  al. 
discovered that adipose lipid storage in mice decreased 
when SUMO-specific protease 2 (Senp2) was specifi-
cally knocked out in adipose tissues (Zheng et al. 2018). 
Senp2 could regulate adipose lipid storage by suppressing 
Setdb1 function via the de-SUMOylation of Setdb1, sug-
gesting that Senp2-mediated deSUMOylation regulates 
lipid metabolism in adipose tissues. In addition, guano-
sine triphosphate binding protein 4 (GTPBP4) was found 
to induce dimeric pyruvate kinase M2 SUMOylation and 
dimer formation through the UBA2-SUMO1 axis, thus 
promoting aerobic glycolysis in hepatocellular carcinoma 
(Zhou et  al. 2022b). Therefore, further studies on the 
homeostasis of SUMOylation and deSUMOylation may 
provide new insights into the diagnosis and treatment of 
these diseases.

Glycosylation
Protein glycosylation is one of the most abundant and 
diverse types of PTMs, in which glycan moieties are 
added to proteins (Reily et  al. 2019). By modulating 
the structure, stability, and function of proteins, gly-
cosylation plays a profound role in various pathologi-
cal and physiological processes (Bangarh et  al. 2023; 
Pradeep et  al. 2023; Reily et  al. 2019). There are two 
major kinds of protein glycosylation in eukaryotes: 

N-linked (N-glycosylation) and O-linked (O-glyco-
sylation). N-glycosylation involves the attachment of 
N-glycans (N-acetylglucosamine/GlcNAc) to the amino 
group of the Asn residue at the sequence Asn–X–Ser/
Thr (where X represents any amino acid except for 
Pro); it initiates in the endoplasmic reticulum (ER) and 
then further modifications occur in the Golgi appa-
ratus (Pradeep et  al. 2023; Schjoldager et  al. 2020). 
O-glycosylation is more complicated, and refers to the 
covalent addition of diverse glycans (such as N-acetyl-
galactosamine (GalNAc), fucose, glucose, xylose, and 
mannose) to the hydroxyl group of Ser/Thr residues, 
and also on tyrosine, hydroxylysine, and hydroxypro-
line; it mostly occurs in the Golgi apparatus (Joshi 
et al. 2018; Li et al. 2022a, b, c; Schjoldager et al. 2020). 
Notably, O-linked N-acetylglucosamine modification 
(O-GlcNAcylation), a unique type of O-glycosylation 
in which O-linked N-acetylglucosamine (O-GlcNAc) 
is added to Ser and Thr residues of proteins located in 
the cytoplasm, nucleus, and mitochondria, has received 
increasing attention in recent years (Gonzalez-Rellan 
et  al. 2022; Yang and Qian 2017). O-GlcNAcylation is 
mediated by O-GlcNAc transferase (OGT) and O-Glc-
NAcase (OGA). OGT catalyzes the addition, whereas 
OGA reversibly removes protein modifications (Gao 
et  al. 2001; Shafi et  al. 2000). Research has indicated 
that O-GlcNAcylation tunes the functions of protein 
in various ways, including protein cellular localiza-
tion, protein stability, and protein–protein interaction 
(Chang et  al. 2020). Interestingly, O-GlcNAcylation 
and phosphorylation have been shown to participate 
in extensive crosstalk with each other, as they can both 
occur on Ser and Thr residues of proteins (Hart et  al. 
2011). O-GlcNAcylation, which is sensitive to cellular 
metabolic states, has been proposed to function as a 
“nutrient and stress sensor” in cells (Bond and Hanover 
2013; Ruan et al. 2013). Notably, emerging evidence has 
shown that glycosylation plays a pivotal role in meta-
bolic diseases. For example, Nishimura et al. discovered 
that suppression of O-GlcNAcylation in the intes-
tine reduced glucose absorption via inhibiting SGLT1 
expression, suggesting that regulating O-GlcNAcyla-
tion in the intestine may provide a novel strategy for 
treating absorption disorders, obesity, and diabetes 
(Nishimura et al. 2022). In addition, Yung et al. revealed 
that ER stress-mediated perturbation of placental pro-
tein glycosylation could lead to the maladaptation of 
maternal hepatic glucose metabolism, which may be a 
new mechanism of maternal metabolic disorders (Yung 
et al. 2023). Thus, considering the intimate relationship 
between glycosylation and metabolic state, studies tar-
geting the regulatory roles of glycosylation may provide 
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novel insights into the treatment of diseases associated 
with aberrant metabolism.

Methylation
Methylation, mediated by methyltransferase, is a wide-
spread phenomenon in both eukaryotes and prokaryotes. 
The substrates of methylation can be DNA, RNA, and 
proteins. Among these, protein methylation is a com-
mon PTM which occurs in both histone and non-histone 
proteins (Dai et  al. 2021). The most common modifica-
tion sites of methylation are lysine and arginine residues 
(Jambhekar et al. 2019). Based on the substrates involved, 
protein methyltransferases can be divided into categories 
such as protein lysine methyltransferases (PKMTs) and 
protein arginine methyltransferases (PRMTs) (Bhat et al. 
2021; Dai et al. 2021; Xu and Richard 2021). PKMTs can 
cause monomethylation, bimethylation, or trimethylation 
of lysines on their substrates (Bhat et al. 2021). Methyla-
tion modifications in arginine include monomethylated 
arginine, asymmetric dimethylarginine, and symmet-
ric dimethylarginine (Blanc and Richard 2017; Dai et al. 
2021). Protein methylation plays an essential role in vari-
ous intracellular processes, including glucose and lipid 
metabolism, via regulating the function of target proteins 
(Biggar and Li 2015; Dilworth et al. 2019; Li et al. 2019; 
Malecki et  al. 2022). For example, Han et al. discovered 
that PRMT6 could mediate asymmetric dimethylation 
of multiple arginine residues of cAMP-response element 
binding protein  (CREB)-regulated transcriptional coac-
tivator 2 (CRTC2), which enhanced the interaction of 
CRTC2 with CREB on the promoters of gluconeogenic 
enzyme-encoding genes and thus played a vital role in 
hepatic glucose metabolism (Che et  al. 2021; Han et  al. 
2014; Jia et  al. 2020). In addition, Jia et  al. found that 
PRMT5 regulates fatty acid metabolism and lipid drop-
let biogenesis in white adipose tissues, and that Prmt5AKO 
mice (the Prmt5 gene is specifically present in adipo-
cytes) exhibit sex- and depot-dependent progressive lipo-
dystrophy (Jia et  al. 2020). Mechanistically, Prmt5 can 
not only methylate and release the transcription elonga-
tion factor SPT5 from the Berardinelli-Seip congenital 
lipodystrophy 2 (Bscl2 encodes Seipin, which can medi-
ate lipid droplet biogenesis) promoter but also methylate 
Sterol Regulatory Element-Binding Transcription Factor 
1a (SREBP1a) and promote lipogenic gene expression. 
Thus, further studies on protein methylation may supply 
potential therapeutic targets for diseases involving dys-
regulated glucose and lipid metabolism.

Other PTMs
In addition to the aforementioned PTMs, other PTMs 
such as lactylation, methylation, S-glutathionylation, 
N-glycosylation, and palmitoylation have also been 

observed to participate in glucose and lipid metabolism-
related diseases. S-glutathionylation is the formation 
of mixed disulfides between glutathione and cysteine 
residues in proteins, which can lead to enhanced or sup-
pressed protein activity (Dalle-Donne et  al. 2009). A 
study performed by Dong et  al. found that S-glutathio-
nylation of the AMPK-α catalytic subunit could activate 
AMPK to improve glucose transportation and degrada-
tion while inhibiting glycogen synthesis and maintain-
ing redox balance under a low reactive oxygen species 
microenvironment, providing new insights into diabe-
tes treatment (Dong et  al. 2016). However, many other 
PTMs have not been studied for their role in glucose and 
lipid metabolism. Given the extensive regulatory roles of 
PTMs in protein function, future studies should inves-
tigate the regulatory roles and mechanisms of various 
PTMs in glucose and lipid metabolism to provide poten-
tial targets for treatment and diagnosis.

In conclusion, PTMs play important roles in protein 
functions and participate in various biological processes. 
Exploring their regulatory roles in glucose and lipid 
metabolism may provide the basis for clinical diagnosis 
and therapy.

Roles of PTMs in glucose and lipid metabolism
Roles of PTMs in glucose metabolism
Cell cycle, growth, apoptosis, and energy metabolism 
are critically affected by glucose metabolism (Mulukutla 
et al. 2010). Glycolysis (involving three irreversible reac-
tions) and gluconeogenesis (involving four irreversible 
reactions) are the central processes of glucose metabo-
lism (Chandel 2021). Disorders in glucose metabolism 
primarily involve disruptions in energy and substance 
metabolism, and they participate in various pathological 
processes. For example, dysregulated glucose metabolism 
is involved in diabetes mellitus and AD (Cao et al. 2022; 
Huang et al. 2023). The reprogrammed glucose metabo-
lism in the enhanced Warburg effect (or aerobic glyco-
lysis) is considered a hallmark of cancer (Povero 2023). 
A better understanding of the regulation and molecular 
mechanisms involved in glucose metabolism can help 
us to understand the basis of many metabolic disorders. 
Recent studies have found that rate-limiting enzymes 
in glucose metabolism, such as facilitated-diffusion glu-
cose transporters (GLUT), phosphofructokinase (PFK), 
and phosphoenolpyruvate carboxykinase (PEPCK), are 
tightly regulated by several PTMs, including phospho-
rylation, acetylation, ubiquitination, glycosylation, croto-
nylation, and dimethylation (Fig. 2) (Ahmed et al. 2023; 
He et al. 2022; Yi et al. 2012). For example, glycosylation 
inhibits PFK1 activity and redirects the flux of glucose 
from glycolysis through the pentose phosphate pathway 
(Yi et  al. 2012). PEPCK is an important enzyme in the 
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gluconeogenic pathway that catalyzes the conversion of 
oxaloacetate to phosphoenolpyruvate, thereby participat-
ing in glucose synthesis. For example, phosphorylation 
of both AMPK and forkhead box transcription factor 
O1 (FoxO1) results in a downregulation of PEPCK and 
G6Pase, thereby promoting glucose uptake and inhibiting 

glucose production (Ahmed et  al. 2023). PEPCK acety-
lation, which can occur at various amino acid residues, 
is emerging as an important regulatory mechanism of 
its activity and is linked to metabolic diseases (Marin-
Hernandez et  al. 2022; Xiong et  al. 2011; Zhang et  al. 
2018). In addition to PTMs of PEPCK, other rate-limiting 

Fig. 2  Roles of post-translational modifications in glucose metabolism
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enzymes have also been shown to play important roles. 
LINC00930 can recruit the retinoblastoma binding pro-
tein 5 and general control nonderepressible 5 complex to 
the promoter of PFKFB3, increasing H3K4 trimethylation 
and H3K9 acetylation levels and transactivating PFKFB3, 
thereby promoting glycolytic flux (He et  al. 2022). In 
addition, we found that crotonylation and dimethylation 
are also involved in glucose metabolism. Crotonylation 
is a type of acylation that regulates gene expression and 
metabolic homeostasis, and a recent study has shown 
its involvement in the regulation of energy metabolism 
(Gowans et  al. 2019). Dimethylation is a process that 
adds two methyl groups to proteins and is known to 
regulate gene expression (Jackson et al. 2004); it can also 
affect glucose metabolism (Pan et al. 2013).

PTMs in glucose transport
The initial and limiting step in glucose metabolism is 
glucose transport through the cell membrane via glu-
cose transport proteins. There are two families of cellular 
glucose transporters: GLUT and sodium-dependent glu-
cose transporters (SGLTs) (Navale and Paranjape 2016). 
Studies have shown that PTMs regulate GLUT and SGLT 
in glucose transport. PTMs directly reflect GLUT activ-
ity. For example, GLUT 1 and 4 are upregulated follow-
ing histone deacetylase inhibition, accompanied by an 
increase in GLUT1 acetylation (Chen et  al. 2015a). ER 
stress-mediated ubiquitination of GLUT-2 and GLUT-4 
during hyperglycemia reduces glucose uptake in the liver, 
exacerbating diabetic pathophysiology (Kumar et  al. 
2022). Moreover, PTMs indirectly reflect GLUT levels. 
For instance, phosphorylation of AMPK increases glu-
cose uptake in myocytes for ATP production by mediat-
ing the expression and translocation of GLUT-4 protein 
(Zhang et al. 2019a). Additionally, Liao et al. found that 
the lncRNA EPB41L4A-AS1 increases histone H3K27 
crotonylation in the GLUT-4 promoter region and non-
histone PGC1-β acetylation, which inhibits GLUT-4 
transcription and suppresses glucose uptake in mus-
cle cells (Liao et al. 2022). Insulin promotes AKT phos-
phorylation and thus increases GLUT-1 at the plasma 
membrane in adipocytes to facilitate glucose uptake 
(Shimamoto et  al. 2019). Thioredoxin Interacting Pro-
tein (TXNIP) also participates in glucose transport. It 
is a negative regulator of cellular glucose uptake, reduc-
ing glucose influx by promoting GLUT1 endocytosis. It 
also serves as a direct substrate of AKT, mediating AKT-
dependent acute glucose influx, and functions as an 
adaptor for basal endocytosis of GLUT4 in  vivo (Wald-
hart et  al. 2017). SGLTs are also regulated by PTMs. 
For instance, inhibition of extracellular signal-regulated 
protein kinase (ERK1/2) and mTOR phosphorylation 
reduces SGLT-1-mediated glucose uptake (Di Franco 

et al. 2017). Furthermore, Cardiotrophin-1 inhibits intes-
tinal sugar absorption by reducing SGLT-1 levels through 
AMPK (Lopez-Yoldi et al. 2016). Overall, PTMs regulate 
GLUT and SGLT via direct and indirect mechanisms that 
affect glucose transport. These findings demonstrate that 
PTMs, such as phosphorylation and acetylation, partici-
pate in glucose transport. GLUT and SGLT can serve as 
interesting therapeutic targets for combating abnormal 
glucose metabolism-related diseases.

PTMs in glycolysis
Glycolysis is the first step in the breakdown of glucose to 
produce high-energy molecules ATP and NADH. This 
process rapidly generates energy by breaking down glu-
cose into pyruvate in the cytosol (Baker and Rutter 2023). 
Three crucial rate-limiting enzymes, hexokinase (HK), 
phosphofructokinase (PFK), and pyruvate kinase (PK), 
control the flux of glycolysis. The activity and protein 
content of rate-limiting enzymes have essential effects 
on glucose metabolism. Investigation of the regula-
tory mechanisms may provide novel insights into thera-
pies for diseases associated with dysregulated glucose 
metabolism.

Numerous studies have shown that PTMs regulate 
glycolytic processes by regulating the translocation, 
content, and stability of rate-limiting enzymes. Yang 
et al. found that phosphorylation of hexokinase 2 (HK2) 
(T473) increased its activity, ultimately enhancing glu-
cose consumption and lactate production (Yang et  al. 
2018). HectH9-mediated K63-linked ubiquitination is 
selective for HK2 regulation, and HectH9 works through 
HK2 to regulate glycolysis (Lee et al. 2019). Baldini et al. 
found that O-GlcNAc cycling in HK in hepatocytes is a 
novel way to regulate HK expression and increase glu-
cose entry into liver cells (Baldini et  al. 2016), support-
ing the crucial roles of PTMs in the glycolytic process. 
In addition, PTMs play a vital role in glycolysis by reg-
ulating PFK. Jeon et  al. found that phosphorylation of 
PFKP (S386) mediated by PI3K/AKT could promote the 
Warburg effect (Jeon et al. 2021). The Warburg effect is 
characterized by increased glycolysis and lactate produc-
tion regardless of oxygen availability (Vander et al. 2009). 
Furthermore, Li et  al. found that acetylation of PFKFB3 
(K472) impaired the activity of the nuclear localization 
signal and resulted in PFKFB3 accumulation in the cyto-
plasm, leading to PFKFB3 activation and enhanced gly-
colysis (Li et al. 2018a). O-GlcNAcylation of PFK1 (S529) 
inhibits its activity and regulates the glycolytic pathway 
through the pentose phosphate pathway (Yi et al. 2012). 
Moreover, PTMs regulate the final step of glycolysis by 
influencing the oligomeric state, subcellular localization, 
and biological activity of PKs. For instance, phospho-
rylation of pyruvate kinase muscle isozyme M2 (PKM2) 
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(Y105) has been suggested to facilitate the Warburg 
effect and tumor cell growth (Kalaiarasan et  al. 2014). 
Furthermore, acetylation of PKM2 (K433) was associ-
ated with the degradation of PKM2 and decreased PK 
activity (Jin et al. 2020). Wang et al. found that ubiquitin 
aldehyde binding 2 regulates PKM2 stability and nuclear 
repositioning by inhibiting its ubiquitination and block-
ing the interaction between PKM2 and its ubiquitin E3 
ligase, thereby enhancing PKM2 activity and promoting 
glycolysis (Wang et al. 2022a). Chaiyawat et al. found that 
lower O-GlcNAcylation levels led to decreased PKM2 
expression but induced higher PKM2-specific activ-
ity (Chaiyawat et  al. 2015). In glycolysis, carbohydrate 
response element binding protein (ChREBP) binds to the 
promoter of liver-type pyruvate kinase and promotes the 
conversion of phosphoenolpyruvate to PK (Uyeda and 
Repa 2006). ChREBP is primarily expressed in the liver 
and adipose tissue and is responsible for the transcrip-
tional control of genes involved in glucose utilization 
and storage (Ortega-Prieto et al. 2019). The regulation of 
ChREBP is complex and involves various PTMs, includ-
ing phosphorylation. Under conditions of high glucose 
availability, ChREBP is phosphorylated by PKA in the 
cytoplasm. This phosphorylation event prevents ChREBP 
from entering the nucleus, and inhibits its transcriptional 
activity (Davies et al. 2008). However, under conditions of 
low glucose levels or increased cellular energy demand, 
ChREBP is dephosphorylated, allowing it to translocate 
into the nucleus and activate the transcription of target 
genes involved in glucose metabolism (Nakagawa et  al. 
2013). The phosphorylation status of ChREBP is tightly 
controlled by cellular glucose levels and energy sta-
tus, allowing for fine-tuning of glucose homeostasis in 
response to changing metabolic demands. Regulation of 
glycolysis is not only exerted by the expression of glyco-
lytic genes and interactions of glycolytic proteins within 
their environment but also by PTMs and transcriptional 
regulation. Various PTMs participate in glycolysis by 
regulating protein functions and may serve as significant 
therapeutic targets in diseases involving abnormal glu-
cose metabolism.

PTMs in gluconeogenesis
Gluconeogenesis is a process by which non-carbohy-
drate precursor molecules are converted to glucose. 
There are two mechanisms that regulate gluconeogen-
esis metabolic pathways: direct regulation through rate-
limiting enzymes and indirect regulation through 
non-rate-limiting enzymes. The key enzymes involved in 
regulating the rate of gluconeogenesis include PEPCK, 
glucose 6-phosphatase (G6Pase), pyruvate carboxylase 
(PC), and fructose-1,6-bisphosphatase (FBP-1). PTMs 
regulate gluconeogenesis by controlling enzyme activity. 

For example, PEPCK acetylation stimulates its interac-
tion with E3 ubiquitin ligase (Ubiquitin Protein Ligase 
E3 Component N-Recognin 5) leading to PEPCK degra-
dation in a proteasome-dependent manner (Jiang et  al. 
2011). Moreover, an increased level of acetylation and 
a decreased level of ubiquitination in PEPCK protein 
in mouse hepatocytes blocks PEPCK protein degrada-
tion and enhances hepatic glucose production (Wang 
et  al. 2022d). Additionally, increased gluconeogenesis 
and decreased intracellular glycogen content result from 
increased H3K4 dimethylation at the G6Pase promoter 
(Pan et  al. 2013). However, in a previous study, it was 
found that during gluconeogenesis, even though PEPCK 
expression was reduced by 90% in the liver after the tar-
geted deletion of the PEPCK gene in mice, there was only 
a 40% reduction in gluconeogenic flux (Johanns et  al. 
2016). This indicates that the regulation of non-rate-lim-
iting enzymes by PTMs also greatly influences glucose 
metabolism, as demonstrated in other studies (Gonzalez-
Rellan et al. 2022; He et al. 2023; Li et al. 2023; Sun et al. 
2020). For example, glucose starvation decreases histone 
acetylation at multiple sites on H3 (K9, K18, K23, and 
K27) to activate gluconeogenic and fat metabolism genes 
(Hsieh et al. 2022). Moreover, phosphorylation of CREB-
regulated transcription coactivator 2 and histone dea-
cetylase 5 by AMPK inhibits glucose production (Hunter 
et  al. 2018). Overall, through direct or indirect effects, 
various PTMs play a vital role in glyconeogenesis, and 
may be a potential target for its regulation.

In summary, PTMs regulate glucose metabolism, 
including glucose transport, glycolysis, and gluconeo-
genesis. They also regulate the activity and protein con-
tent of enzymes in these metabolic pathways, which in 
turn affect glucose metabolism. Therefore, investigating 
the regulatory mechanisms of PTMs may provide new 
insights into the development of therapies for diseases 
associated with dysregulated glucose metabolism.

Roles of PTMs in lipid metabolism
Lipids are hydrophobic molecules that include triacylg-
lycerol, cholesterol, cholesterol esters, phospholipids, gly-
colipids, and lipoproteins. Lipid metabolism influences 
various biological processes, including energy metabo-
lism, signal transduction, and the biosynthesis of mem-
brane lipids (Bian et al. 2021; Marx 2022). Aberrant lipid 
metabolism is closely related to many diseases. For exam-
ple, insufficient fatty acid uptake and utilization lead to 
malnutrition, whereas excessive lipid storage and hyper-
lipidemia are involved in atherosclerosis, obesity, and 
non-alcoholic fatty liver disease (Liu et al. 2021b; Lu et al. 
2021). A better understanding of the factors that regulate 
lipid metabolism may provide new potential therapeutic 
strategies. Notably, a growing body of research has found 
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that PTMs play vital roles in lipid metabolism by affect-
ing key proteins at pivotal steps (Fig. 3).

PTMs in fatty acid transport
When the body requires energy, triglycerides stored in 
the adipose tissue are mobilized and decomposed into 
free fatty acids and glycerol, which are released into the 
blood and transported to tissues requiring energy. This 
process involves various transporters, including fatty acid 
translocase (FAT, also named cluster of differentiation 
36, CD36), fatty acid transport proteins (FATP), and fatty 
acid-binding protein (FABP) (Li et al. 2022a). CD36, a key 
mediator of lipid transport, facilitates the transport and 
uptake of long-chain fatty acids (Li et al. 2022c). Several 
PTMs have been shown to affect CD36-mediated lipid 
transport (Luiken et  al. 2016). For instance, Zeng et  al. 
discovered that inhibition of CD36 palmitoylation could 
increase its localization to mitochondria and enhance its 
interaction with long-chain acyl-CoA synthetase 1, ulti-
mately enhancing hepatic fatty acid β-oxidation (Zeng 
et  al. 2022). In addition, ubiquitination regulates CD36 
levels. However, Smith et  al. discovered that fatty acids 
could strongly enhance the ubiquitination of CD36 and 
reduce CD36 protein levels, whereas insulin could reduce 

CD36 ubiquitination and increase CD36 protein levels 
(Smith et  al. 2008). This opposing regulation of CD36 
may modulate fatty acid uptake (Smith et al. 2008). Nota-
bly, PTMs can also affect CD36 indirectly by modifying 
upstream kinases and transcription factors. Choi et  al. 
demonstrated that phosphorylation of AMPK by ber-
berine could induce the phosphorylation of ERK1/2 and 
subsequently cause CCAAT/enhancer-binding protein β 
(C/EBPβ) binding to the C/EBP-response element in the 
CD36 promoter, ultimately leading to increased CD36 
expression in hepatocytes (Choi et al. 2017).

Studies on PTMs of FATP and FABP are limited. Insu-
lin receptor is a receptor tyrosine kinase. Nielsen et  al. 
discovered that in myocytes and mammary epithelial 
cells, FABP was phosphorylated in response to insu-
lin stimulation in the presence of tyrosine phosphatase 
inhibitors, indicating that these phosphorylated FABPs 
might serve as an intermediary in signal transduction 
pathways between the insulin receptors and lipid metab-
olism (Nielsen et  al. 1994, Nielsen and Spener 1993). 
However, no phosphorylation was found in FABP from 
rat soleus muscle (M-FABP) upon insulin stimulation, 
suggesting that tyrosine phosphorylation of M-FABP was 
not an important physiological phenomenon (Prinsen 

Fig. 3  Roles of post-translational modifications in lipid metabolism
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et  al. 1994). Thus, the effects of phosphorylation on 
FABPs from different tissues might be diverse and require 
further study. Further research is also needed on the role 
of other PTMs in FABP, and in various PTMs in FATP.

In summary, several PTMs can affect fatty acid trans-
port by modulating the key transporter protein, CD36. 
Nevertheless, further research is required to explore the 
effects of other PTMs on CD36 and various PTMs on 
FATP and FABP to provide novel insights into the regula-
tion of fatty acid transport.

PTMs in fatty acid oxidation (FAO)
Fatty acids, via their oxidation, serve as the primary 
energy sources in humans and mammals. Normal FAO 
is essential in maintaining many biological processes, 
whereas dysregulated FAO is associated with many dis-
eases. FAO is a complex process and can be modulated 
by many mechanisms. Accumulating evidence has shown 
that PTMs play vital roles in FAO.

Long-chain acyl-CoA dehydrogenases (LCAD), 
β-hydroxyacyl-CoA dehydrogenase (β-HAD), hydroxya-
cyl-CoA dehydrogenase trifunctional multienzyme com-
plex subunit α (HADHA), and acetyl-CoA carboxylase 
2 (ACC2) are key FAO enzymes, and PTMs have been 
known to regulate their activity. GCN5L1 is an acetylase 
that counteracts the deacetylation function of SIRT3 (Lv 
et  al. 2019). Lv et  al. reported that LCAD and β-HAD 
under the control of GCN5 general control of amino acid 
synthesis 5-like 1 (GCN5L1) led to decreased enzymatic 
activity and impaired FAO rate in a dyslipidemia-induced 
kidney injury model. Similarly, Thapa et al. demonstrated 
that acetylation of HADHA by GCN5L1 decreased its 
activity in HepG2 cells (Thapa et  al. 2018). However, 
another study (Thapa et  al. 2017) reported opposing 
results in the heart; acetylation of LCAD and HADHA 
by GCN5L1 enhanced FAO. These discrepancies may 
be caused by differences in the tissues controlling the 
acetylation status and FAO or tissue-specific acetylated 
sites of the enzymes, which should be explored in future 
studies. Acetyl-CoA carboxylase (ACC) is involved in 
FAO by inhibiting a key rate-limiting enzyme, carnitine 
palmitoyl transferase (CPT-I), through malonyl-CoA. 
A study conducted by O’Neill et  al. using ACC2 S212A 
knock-in mice found that phosphorylation of ACC2 at 
S221 (S212 in mice) by AMPK regulates skeletal muscle 
FAO and insulin sensitivity (O’Neill et al. 2014). Neddyla-
tion is a ubiquitin-like PTM, in which the ubiquitin-like 
protein neural precursor cell expressed, developmentally 
downregulated protein 8 (NEDD8) binds to the target 
protein by three enzymes: the activating enzyme, conju-
gating enzyme, and ligase (Zhu et  al. 2022a). By affect-
ing the stability, conformation, subcellular localization, 
and activity of target proteins, neddylation plays critical 

roles in diverse biological processes including metabo-
lism, immunity, and tumorigenesis (Zou and Zhang 
2021). Zhang et al. found that hepatic neddylation could 
stabilize flavoproteins, thus promoting FAO in neonatal 
mouse livers and preventing fasting-induced steatosis in 
adult mice (Zhang et al. 2020b). Flavoproteins are com-
ponents of the electron transport chain in the mitochon-
dria and are essential for energy metabolism.

In summary, various PTMs regulate FAO, which may 
provide an extremely promising insight for treating dis-
eases associated with dysregulated FAO. However, it 
is notable that the function of a type of PTM may vary 
when it acts on different tissues or modifies different sites 
of the same protein. Thus, in the future, experimental 
studies are needed to explore the roles and mechanisms 
of various PTMs in regulating genes related to FAO in 
different sites, tissues, or organs, which may provide a 
basis for developing precise treatments.

PTMs in cholesterol metabolism
Cholesterol and cholesterol esters determine the com-
position of the plasma membrane, act as precursors of 
steroid hormones and bile acids, and regulate various cel-
lular functions (Duan et al. 2022). However, excess cho-
lesterol is harmful and can lead to many diseases, such as 
cardiovascular diseases. For instance, defects in choles-
terol biosynthesis cause Smith–Lemli–Opitz syndrome, 
a neurological and developmental disorder character-
ized by multiple developmental defects (Tomita et  al. 
2022). Excessive cholesterol levels are also associated 
with atherosclerosis (Baumer et al. 2020). Thus, the bal-
ance between cholesterol biosynthesis, uptake, transport, 
and secretion is of great importance for maintaining cho-
lesterol homeostasis. Notably, emerging evidence has 
indicated that PTMs are vital in regulating cholesterol 
metabolism.

Several key enzymes and proteins involved in cho-
lesterol metabolism are reportedly regulated by PTMs 
(Byun et  al. 2018; Johnson and DeBose-Boyd 2018; 
Shimano and Sato 2017). For example, 3-hydroxy-
3-methylglutaryl coenzyme A reductase (HMG-CoA 
reductase) can be ubiquitinated and then degraded 
through endoplasmic reticulum-associated degradation 
(Johnson and DeBose-Boyd 2018). HMG-CoA reduc-
tase, which catalyzes the synthesis of mevalonic acid, 
is the rate-limiting enzyme in cholesterol biosynthesis. 
The regulation of its levels may lead to elevated levels 
of cholesterol and its precursors, inhibiting cholesterol 
synthesis and regulating cholesterol homeostasis (John-
son and DeBose-Boyd 2018). PTMs can also participate 
in cholesterol metabolism by regulating the activity of 
sterol regulatory element binding protein (SREBP)-2, an 
isoform of the transcription factor family SREBP, which 
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is involved in regulating the transcription of genes 
related to cholesterol metabolism (Shimano and Sato 
2017). The transactivation capacity of SREBP-2 was 
shown to decrease when it was modified by SUMO-1 
at Lys464 (Hirano et  al. 2003). In contrast, phospho-
rylation of SREBP-2 at Ser-432 and Ser-455 report-
edly increased its transactivation capacity (Kotzka 
et  al. 2004). These results indicate that the activity of 
SREBP-2 is commonly regulated by PTMs, which could 
provide novel insights into maintaining cholesterol 
metabolism. Notably, PTMs are also involved in the 
regulation of bile acid metabolism, which is the main 
pathway for cholesterol utilization. The Farnesoid X 
receptor (FXR), which transcriptionally regulates genes 
involved in bile acid metabolism, is essential in main-
taining bile acid homeostasis. Byun et  al. discovered 
that, in response to postprandial FGF19, phosphoryla-
tion of FXR by Src was critical for its transcriptional 
regulation of bile acid levels and may be a potential 
therapeutic target for treating bile acid-related diseases 
(Byun et  al. 2018). In addition, phosphorylation and 
palmitoylation of the human apical sodium-depend-
ent bile acid transporter (hASBT), responsible for the 
reclamation of bile acids from the intestinal lumen, 
reportedly regulate membrane expression, function, 
and stability of hASBT, ultimately influencing bile 
acid enterohepatic circulation and metabolism (Aye-
woh et  al. 2021; Chothe et  al. 2019). Taken together, 
PTMs, by influencing the expression and activity of key 

enzymes and transcription factors, may participate in 
cholesterol metabolism. Considering the importance 
of cholesterol metabolism balance in maintaining nor-
mal physiological processes, these results may provide 
novel insights for the treatment of diseases caused by 
dysregulated cholesterol metabolism.

In conclusion, PTMs influence various processes of 
lipid metabolism via the modification of key proteins. 
PTMs also influence lipid storage (Qian et al. 2017) and 
adipogenesis (Su et  al. 2022). Considering their impor-
tance in regulating target protein expression, activity, 
and location, exploring the roles of various PTMs in lipid 
metabolism may lead to the treatment of diseases caused 
by dysregulated lipid metabolism. However, since the 
same modification at various sites or various modifica-
tions at the same site may lead to different effects on the 
target protein, the detailed roles of PTMs require further 
investigation for precise clinical treatments.

Roles of PTMs in diseases associated 
with dysregulated glucose and lipid metabolism
Dysregulated glucose and lipid metabolism are associ-
ated with several acute and chronic metabolic diseases, 
including diabetes mellitus, Alzheimer’s disease, ath-
erosclerosis (AS), obesity, tumor and sepsis. Recently, 
an increasing number of studies have shown that PTMs 
play a vital role in these metabolic diseases by regulat-
ing glucose and lipid metabolism (Fig. 4).

Fig. 4  Roles of PTMs in metabolic diseases



Page 14 of 25Yang et al. Molecular Medicine           (2023) 29:93 

Role of PTMs in diabetes mellitus (DM)
Diabetes mellitus (DM) is a chronic metabolic disorder 
characterized by elevated blood glucose levels result-
ing from inadequate insulin production. Diabetes can be 
differentiated into type 1 diabetes mellitus (T1DM) and 
type 2 diabetes mellitus (T2DM). T1DM is an autoim-
mune disease resulting from the loss of immune toler-
ance to beta cell autoantigens. PTMs have been shown 
to regulate glucose and lipid metabolism and are associ-
ated with the pathology of DM; for instance, higher doses 
of AM-879 inhibit Ser273 phosphorylation to improve 
insulin sensitivity and glucose disappearance rates 
(Terra et al. 2023). Moreover, glucose and lipid metabo-
lism disturbances promote myocardial fibrosis, apop-
tosis, and hypertrophy by inhibiting phosphorylation of 
Akt (T308 or S473) mediated by galectin-3 (Sun et  al. 
2021b). Although the expression level of enoyl-CoA-
hydratase/3-hydroxyacyl-CoA dehydrogenase decreases, 
acetylation enhances its activity, thereby overall increas-
ing β-oxidation processes in the kidneys of diabetic indi-
viduals (Sas et al. 2016). Artemisia dracunculus L. extract 
increased the phosphorylation of AMPK (T172), affect-
ing downstream signaling of AMPK, inhibiting ACC 
and increasing SIRT1 protein levels to improve glucose 
homeostasis by enhancing insulin action and reducing 
ectopic lipid accumulation (Vandanmagsar et  al. 2021). 
Recent studies have shown that PTMs are also involved 
in glucose transport, affecting the development of dia-
betes. For instance, the inhibition of SGLT1 expression 
and lack of O-GlcNAcylation in the gut decreased glu-
cose absorption (Nishimura et al. 2022). Yang et al. found 
that Epigynum auritum increased phosphorylation levels 
of Akt, AMPK, and GSK-3β, which in turn upregulated 
the expression of GLUT-2 and GLUT-4, thus exert-
ing a hypoglycemic effect (Yang et  al. 2022a). Increased 
O-GlcNAc levels in diabetes decrease ERα activity, which 
reduces the brain’s ability to utilize glucose, reduces the 
release of neurotrophic factors, and increases the risk of 
neuronal oxidative stress (Shi et  al. 2021). Furthermore, 
the phosphorylation of ribosomal protein S6 kinase and 
the SREBP1 pathway in nearby hepatocytes is influ-
enced by calpain proteolysis in cultured ECs, leading to 
the induction of de novo lipogenesis (Akasu et al. 2022). 
The identification and characterization of these PTMs 
present significant challenges and research on PTMs can 
provide substantial insights into the biological functions 
of these proteins.

Role of PTMs in Alzheimer’s disease (AD)
AD, a neurodegenerative disease associated with 
decreased cognitive abilities, is characterized by dys-
regulated brain glucose metabolism and the accumula-
tion of abnormal protein deposits called myloid plaques 

and neurofibrillary tangles (NFTs) (Guillozet et al. 2003). 
PTMs such as phosphorylation, O-GlcNAcylation, and 
succinylation play a vital role in AD pathogenesis. Tau, 
a cytosolic phosphoprotein associated with microtubule 
assembly, is modified by various PTMs. Hyperphospho-
rylated tau is a major component of NFTs in AD; this 
indicates that inhibiting the hyperphosphorylation of tau 
may be a novel therapeutic target for AD. For instance, 
Zhou et  al. discovered that Sirt2 was involved in tau 
phosphorylation through ERK activation in  vivo and 
in vitro, providing novel insights for the treatment of AD 
(Zhou et al. 2022a). Xu et al. demonstrated that electroa-
cupuncture preserves cognition in an AD mouse model. 
At the molecular level, electroacupuncture enhances 
glucose metabolism and inhibits abnormal phosphoryla-
tion of tau protein via the AKT/GSK3β signaling pathway 
(Xu et  al. 2020). Regarding O-GlcNAcylation, Liu et  al. 
revealed that downregulation of tau O-GlcNAcylation 
leads to abnormal hyperphosphorylation of tau and neu-
rofibrillary degeneration in AD (Liu et  al. 2004, 2009). 
Using proteomic analysis, Tramutola et  al. discovered 
that proteins with reduced O-GlcNAcylation levels are 
involved in key pathways in the progression of AD, such 
as neuronal structure, protein degradation, and glucose 
metabolism (Tramutola et  al. 2018). Pinho et  al. found 
that globally reduced O-GlcNAcylation levels were asso-
ciated with impaired mitochondrial bioenergetic func-
tion, disruption of the mitochondrial network, and loss of 
cell viability in in vitro models of AD (Pinho et al. 2019). 
These results provide a better understanding of the role 
of O-GlcNAcylation in AD. In recent years, other PTMs, 
such as succinylation, lactylation, glycosylation, palmi-
toylation, and nitrosylation have also been found to par-
ticipate in AD (Abrams et  al. 2011; Andrew et  al. 2017; 
Bukke et al. 2020; Pan et al. 2022; Yang et al. 2022b). Yang 
et  al. discovered that succinylation of the amyloid pre-
cursor protein promoted amyloid plaque formation, and 
succinylation of tau promoted its aggregation to NFTs, 
indicating that succinylation may be associated with 
AD (Yang et  al. 2022b). Moreover, dysregulated O-Glc-
NAcylation and succinylation in AD may be caused by 
abnormalities in brain glucose metabolism (Liu et  al. 
2009; Yang et al. 2022b), suggesting that these PTMs may 
link dysregulated brain glucose metabolism to pathologi-
cal alterations in AD. In conclusion, various PTMs regu-
late the pathogenesis of AD and provide insights into 
potential therapeutic targets for AD.

Role of PTMs in atherosclerosis (AS)
AS is characterized by large and medium arteries, 
which are caused by metabolic disorders of the arterial 
vessel wall, and is commonly considered a major con-
tributor to cardiovascular diseases (CVDs), including 
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stroke and myocardial infarction (Meng et  al. 2022). 
PTMs have been associated with the pathology of AS by 
regulating glucose and lipid metabolism. First, abnor-
mal levels of protein phosphorylation have been found 
to be closely related to the occurrence and development 
of AS. FGF19-induced phosphorylation of hepatic FXR 
is a nuclear receptor that plays an important role in 
maintaining metabolic homeostasis via the transcrip-
tional control of many genes. Byun et al. reported that 
FXR could maintain cholesterol levels and thus protect 
against AS (Byun et al. 2019).

Glycosylation has also been shown to participate in 
regulating AS. Altered glycosylation of various proteins 
involved in lipoprotein metabolism, such as apolipo-
proteins and lipoprotein receptors, can change their 
expression and/or function, thus affecting AS devel-
opment (Pirillo et  al. 2021). For example, low density 
lipoprotein receptor (LDLR), a glycoprotein, regulates 
circulating LDL-C levels by binding to LDLs. Glycosyla-
tion of LDLR is essential for its function by maintain-
ing its expression and binding affinity with LDLs and 
very-low-density lipoproteins (Filipovic 1989; van den 
Boogert et al. 2019; Wang et al. 2018a). Ye et al. showed 
that the expression of GalNAc-T4 (GALNT4) and pro-
tein O-glycosylation were both increased in plaques 
in ApoE−/−mice, and GALNT4 could increase O-gly-
cosylation of PSGL-1 via the Akt/mTOR and NF-κB 
pathways, thus priming adhesion and transmigration of 
monocytes in AS. These results provide novel insights 
into the role of O-glycosylation in the pathogenesis of 
AS, suggesting that GALNT4 may be a potential target 
for AS treatment (Ye et al. 2022).

Moreover, S-nitrosylation and SUMOylation were 
found to play important roles in AS (Chen et al. 2015b; 
Li et  al. 2018b; Liu et  al. 2020). Hyperhomocysteine-
mia (HHcy) is an independent risk factor for CVDs, 
including AS. HHcy may participate in AS by regulat-
ing S-nitrosylation. Chen et al. reported that HHcy can 
promote AS by reducing endothelial or aortic protein 
S-nitrosylation levels (Chen et  al. 2015b). In addition, 
Li et al. reported that HHcy could also reduce the level 
of protein S-nitrosylation in T cells, ultimately pro-
moting the secretion of inflammatory cytokines and 
the proliferation of T cells and AS. Mechanistically, 
HHcy increased the expression of S-nitrosoglutathione 
reductase (GSNOR), a key enzyme controlling deni-
trosylation. These results provide new insights into 
HHcy-induced AS (Li et  al. 2018b). Taken together, 
PTMs, including phosphorylation, glycosylation, 
S-nitrosylation, and SUMOylation, are instrumental 
in regulating AS development; however, detailed func-
tions and mechanisms require further investigation to 
provide a basis for developing precise treatments.

Role of PTMs in obesity
Obesity, a serious public health problem worldwide, is a 
significant risk factor for many diseases, including CVDs, 
T2DM, and non-alcoholic fatty liver disease (Wensveen 
et  al. 2015). The pathogenesis of obesity is complicated 
and includes genetic factors, environmental factors, and 
metabolic dysregulation (Cruciani et  al. 2023). Recent 
studies have explored the roles and molecular mecha-
nisms of PTMs in obesity. For example, N-myristoylation 
is a ubiquitous, generally co-translational modification 
of newly synthesized proteins that involves attachment 
of the C14 fatty acid (myristic acid) to N-terminal gly-
cine (Rampoldi et al. 2012). Neopane et al. reported that 
blocking AMPK β1 myristoylation enhanced AMPK 
activity and protected mice from high-fat diet-induced 
obesity and hepatic steatosis (Neopane et  al. 2022). 
AMPK is a cellular energy sensor that can phosphorylate 
a variety of substrates, including key metabolic proteins 
and transcription factors, to restore energy homeosta-
sis. Therefore, these results may provide a novel strategy 
for treating metabolic diseases. As mentioned above, 
FXR controls the expression of many genes involved in 
bile acid, lipid, glucose, and amino acid metabolism, and 
maybe a potential target for diseases associated with met-
abolic disorders. Numerous studies have shown that FXR 
can be modified by several PTMs and can affect obesity-
related disorders. For example, Kim et  al. revealed that 
a dysregulated acetyl/SUMO switch in FXR could pro-
mote obesity. Mechanistically, acetylation of FXR blocks 
its interaction with the SUMO ligase PIASy and inhibits 
SUMO2 modification at K277, leading to obesity (Kim 
et  al. 2015). These results provide potential therapeutic 
and diagnostic targets for obesity-related metabolic dis-
orders. Obesity is also a significant risk factor for kidney 
damage, namely obesity-related nephropathy (Arabi et al. 
2022). Chen et  al. showed that IκB kinase could inacti-
vate the deubiquitination activity of cylindromatosis 
protein by activating its phosphorylation, thus promot-
ing the ubiquitination of Nrf2 and aggravating oxidative 
stress injury in the kidney in obesity-related nephropathy 
(Chen et  al. 2021b). In summary, PTMs play an impor-
tant role in obesity and obesity-related diseases and rep-
resent a large number of potential therapeutic targets. 
However, in the future, more experimental studies are 
needed to explore the roles and mechanisms of various 
PTMs in regulating the expression of genes related to 
metabolism and the resulting impact on obesity.

Role of PTMs in tumor
PTMs are crucial for controlling tumor immunity and 
immunotherapy and offering a potential target for 
enhancing the effectiveness of immunotherapy. Tumor 
immune microenvironments and the impact of the 
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immune system, in addition to changes in cancer cells, 
are the primary factors in tumor initiation and devel-
opment. PTMs such as phosphorylation, ubiquitina-
tion, acetylation, and glycosylation, are thought to be 
associated with tumorigenesis. For instance, epidermal 
growth factor receptor phosphorylation by PFKP (Y64) 
has been known to be involved in AKT activation and 
AKT-mediated phosphorylation of β-catenin (S552), 
promoting the glycolytic process in brain tumor growth 
(Lee et  al. 2020). Glycyrrhizin inhibits HK2 by decreas-
ing the phosphorylation level of AKT, suppressing the 
Warburg effect and cell proliferation in peripheral nerve 
injury (Sun et al. 2021a). PKC increases the phosphoryla-
tion and nuclear translocation of PKM2 to enhance lipo-
genesis and tumor development in prostate cancer cells 
(Lai et  al. 2023). Moreover, tripartite motif-containing 
35 (Trim35) regulates the tetrameric and dimeric leaps 
of PKM2 through ubiquitin action and affects the malig-
nant biological behavior of breast cancer by regulating 
the Warburg effect (Wu et  al. 2022). Glycosylation of 
PFK1 at (S529) reduces cancer cell proliferation in vitro 
and slows tumor development (Yi et  al. 2012). PKM2 
glycosylation may be a novel target for controlling can-
cer metabolism and tumorigenesis in colorectal cancer 
(Chaiyawat et al. 2015). Membrane-associated RING-CH 
8 promotes ubiquitination-mediated proteasomal degra-
dation to reduce HK2 protein levels, thereby regulating 
and repressing glycolysis to promote tumor suppressors 
in colorectal cancer (Wang et  al. 2022e). Cisplatin-acet-
ylated PFKFB3 (K472) causes accumulation of PFKFB3 
in the cytoplasm, which facilitates its phosphorylation by 
AMPK, leading to PFKFB3 activation and enhanced gly-
colysis (Li et al. 2018a). Epidermal growth factor receptor 
activation rapidly increases PFKFB3 phosphorylation and 
expression and increases glycolysis in non-small cell lung 
cancer cells (Lypova et al. 2019). These studies reveal that 
cancer development, progression, and metastasis are inti-
mately correlated with PTMs, although the underlying 
molecular pathways remain poorly understood. Further, 
PTM-mediated dysfunction of glucose and lipid metab-
olism, especially its effects on various organs, is closely 
related to tumorigenesis. Hence, PTMs can be highly rel-
evant in the search for drug targets and diagnostic bio-
markers in tumorigenesis.

Role of PTMs in sepsis
Sepsis is defined as the presence of systemic signs of 
infection, while severe sepsis is defined as sepsis plus sep-
sis-induced organ dysfunction or tissue hypoperfusion 
(Singer et  al. 2016). PTMs are significantly associated 
with sepsis-associated lung injury, myocardial injury, 
and encephalopathy. For instance, modulation of sepsis-
enhanced glycolysis with 2-deoxy-d-glucose significantly 

attenuates sepsis-induced cardiac dysfunction. These 
mechanisms involve attenuating sepsis-induced pro-
inflammatory responses and myocardial apoptosis by 
decreasing mitogen activated protein kinase 3 phos-
phorylation (Zheng et al. 2017). In addition, in the LPS-
treated human umbilical vein endothelial cell (HUVEC) 
model, dichloroacetate restored pyruvate dehydrogenase 
complex function by reversing LPS-induced phospho-
rylation of pyruvate dehydrogenase E1 (S293 and S300), 
preventing lactic acid production and HUVEC mon-
olayer barrier dysfunction (Mao et  al. 2022). Moreo-
ver, inhibition of glycolysis or the prevention of PKM2 
nuclear aggregation significantly reduces the phospho-
rylation and activation of transcription factor 2 (ATF2), 
thus reducing LPS-induced pyroptosis of microglia (Li 
et  al. 2021). ER stress can increase the phosphoryla-
tion of signal transducer and activator of transcription 
3 (STAT3) and monoclonal antibody to Suppressor of 
Mothers against Decapentaplegic (SMAD) family mem-
ber 3 (Smad3), and also activate UPS‐mediated prote-
olysis to promote sepsis‐induced muscle atrophy (Zheng 
et al. 2023). Finally, p53 deacetylation by the deacetylase 
Sirtuin 1 (Sirt1) through resveratrol/quercetin admin-
istration or mutation of the acetylated lysine site in p53 
promotes  renal tubular epithelial cell autophagy, allevi-
ating sepsis-induced acute kidney injury. Other PTM-
mediated dysfunctions of glucose metabolism are closely 
related to sepsis. For instance, cynaroside inhibited gly-
colysis-related proteins, including PFKFB3, HK2, and 
HIF-1α, and glycolysis-related hyperacetylation of high 
mobility group box  1 (HMGB1) to restore PK activity 
in the septic liver (Pei et al. 2021). Furthermore, Hwang 
et al. reported a protective effect of glucosamine on sep-
sis, potentially through the O-GlcNAcylation of nucleo-
cytoplasmic proteins in sepsis-induced lung injury and 
inflammation (Hwang et al. 2019). Therefore, PTMs exert 
various physiological effects in sepsis models by affecting 
the lung, skeleton, brain, and cardiac muscles. Overall, 
the most common PTMs involved in glucose metabolism 
include phosphorylation, acetylation, and ubiquitination.

Further prospects of PTMs in glucose and lipid 
metabolism
PTMs play essential roles in cellular physiology and 
pathology, regulate glucose and lipid metabolism, and 
influence almost all aspects of cell biology and patho-
genesis. However, many issues remain to be resolved 
before PTM sites can be used as promising targets 
for treating glucose and lipid metabolism disorders. 
Understanding the molecular mechanisms underly-
ing PTMs could shed light on new therapeutic inter-
ventions. Although excellent work on PTMs has been 
carried out in past decades, PTMs of rate-limiting 
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enzymes in glycosphingolipid biosynthesis need to be 
considered for future development. Moreover, PTMs 
have diverse functions and can regulate other PTMs, 
leading to complex regulatory crosstalk. Interprotein 
crosstalk between phosphorylation and SUMOylation 
has been widely reported. For example, S-phase kinase-
associated protein 2, an E3 ubiquitin ligase, mediates 
FBP1 protein ubiquitination and degradation induced 
by phosphatase and tensin homolog loss and promotes 
the Warburg effect in prostate cancer cell growth (Song 
et  al. 2022). Enhancing the connection between Akt 
and HK2 through K63-linked ubiquitination eventu-
ally leads to an increase in the phosphorylation of HK2 
on Thr473 and mitochondrial localization, which is 
involved in glycolysis and tumor development (Yu et al. 
2019). Thus, these PTMs greatly complicate mecha-
nisms that modulate proteasome activity.

In addition, various regulations of rate-limiting 
enzymes in glucose and lipid metabolism could improve 
our understanding of the biological roles of these PTMs 
and provide a foundation for the research of regulatory 
mechanisms for these types of PTMs. Different diseases 
affect the corresponding processes of glycolipid metabo-
lism, thus exerting specific regulatory effects. In diabetes, 
glucose transport disorders and gluconeogenesis have 
become the focus of disease intervention, and various 
glucose-lowering drug treatments have been developed 
based on the PTMs of SGLT and GLUT. However, in sep-
sis, PTMs specifically regulate metabolic changes in the 
septic state by modulating the activity and localization of 
enzymes, such as glycolytic processes, mainly affecting 
the Warburg effect, which has become an essential target 
for sepsis intervention. Angiogenesis and immune escape 
are important intervention targets for PTMs in tumor 
development. With the development of genomic, tran-
scriptomic, proteomic, and epigenetic technologies, the 
prospects of novel drugs targeting PTM sites are promis-
ing. PTM sites have been proven to be promising thera-
peutic sites for treating glucose and lipid metabolism 
disorders, although further studies are needed to eluci-
date the mechanisms involved.

Advances in next-generation sequencing and mass 
spectrometry proteomics technologies have led to an 
explosion of data on PTM sites and disease-associated 
glucose and lipid metabolism. To predict succinyla-
tion sites, machine-learning-based prediction of protein 
modification sites, such as DeepSuccinylSite, has become 
popular (Thapa et al. 2020). In the future, PTM sites may 
become novel biomarkers and therapeutically-related 
targets for glucose and lipid metabolism diseases. For 
example, PTMs of blood-derived alpha-synuclein can act 
as biochemical markers for Parkinson’s disease (Vicente 
et al. 2017). Although research on PTMs has increased in 

recent years, their role in glucose and lipid metabolism 
disorders requires further investigation.

Thus far, proteomic studies on PTMs that regulate 
development have primarily focused on phosphoryla-
tion. Frequently, abnormal phosphorylation causes 
cellular processes to become disorganized, which ulti-
mately results in the onset and progression of illnesses. 
Consequently, medications often target kinases and 
phosphatases. Nearly one-third of the pharmaceutical 
industry’s current drug development initiatives focus 
on PKs, one of the most significant categories of thera-
peutic targets. For example, the hypoglycemic and anti-
obesity characteristics of cardiotrophin-1 (CT-1) may 
be explained by the fact that CT-1 limits intestinal sugar 
absorption by lowering SGLT-1 levels through AMPK 
phosphorylation (Lopez-Yoldi et  al. 2016). Additionally, 
by increasing the activities of HK, glycogen synthase, 
and the phosphorylation of glycogen synthase kinase 3 
(GSK3) protein, whole-grain highland barley enhances 
glycogen storage in the liver (Deng et al. 2020). Similarly, 
other PTMs can be used as targets for drug therapy. The 
PI3-K/Akt-GSK3beta-FBW7 signaling axis was downreg-
ulated by xanthohumol, which led to the ubiquitination 
of c-Myc and inhibition of tumor glycolysis (Yuan et al. 
2020). Further multicenter clinical studies are needed to 
emphasize the role of modifications in clinical applica-
tions and confirm their clinical significance.

Conclusion
In this review, we summarized the latest advancements 
pertaining to PTMs involved in regulating glucose and 
lipid metabolism. Regulation of rate-limiting metabolic 
enzymes is essential for controlling cellular metabolic 
changes. PTMs offer a dynamic way to regulate subcel-
lular localization, stability, and protein interactions and 
activity. Moreover, PTMs regulate cellular metabolism, 
especially involving rate-limiting metabolic enzymes. In 
recent years, PTMs have been shown to participate in 
nearly all aspects of vital biological processes by regulat-
ing protein functions, such as glucose transport, glycoly-
sis, and gluconeogenesis, and aberrant states of PTMs are 
frequently implicated in diseases involving glucose and 
lipid metabolism. Hence, PTM sites may become poten-
tial therapeutic targets for regulating glucose and lipid 
metabolism and controlling disease progression. There-
fore, in-depth insights into the mechanisms of PTMs in 
glucose and lipid metabolism may provide a theoreti-
cal basis for developing new drugs. Thus, future studies 
should focus on the following issues:

1.	 Molecular mechanisms underlying the role of AKT 
in PTMs of GLUT and SGLT transporter proteins.
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2.	 Regulation of PFK by PTMs that affects the Warburg 
effect and glycolytic pathway in sepsis.

3.	 Thorough investigation of the expression of PC and 
regulation of its activity, as PC, in addition to PEPCK, 
FBP-1 and G6Pase, is another rate-limiting enzyme 
in gluconeogenesis.

4.	 Clinical research regarding precision medicine and 
potential therapeutic targets for clinical diagnosis, 
prognosis, and therapy of PTMs in lipid and glucose 
metabolism.

5.	 Improved understanding of the physiological effects 
of crosstalk between different PTMs.

6.	 Regulation of non-rate-limiting enzymes, in addi-
tion to the PTMs of critical enzymes involved in gly-
colipid metabolism.
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